|x-y|+|y+\(\dfrac{9}{25}\)|<0
tìm x,y thỏa mãn
giúp e vs ạ
Cho \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}và\dfrac{9-x}{7}+\dfrac{11-x}{9}=2\).Tìm x+y+z
theo bài ra ta có:
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{x+16+y-25+z+9}{9+16+25}=\dfrac{x+y+z}{50}\\ \Rightarrow\dfrac{x+16}{9}=\dfrac{x+y+z}{50}\left(1\right)\)ta lại có:
\(\dfrac{9-x}{7}+\dfrac{11-x}{9}=2\\ \Rightarrow\dfrac{7+2-x}{7}+\dfrac{9+2-x}{9}=2\\ \Rightarrow\left(1+\dfrac{2-x}{7}\right)+\left(1+\dfrac{2-x}{9}\right)=2\\ \Rightarrow\left(1+1\right)+\left(\dfrac{2-x}{7}+\dfrac{2-x}{9}\right)=2\\ \Rightarrow2+\left(2-x\right)\left(\dfrac{1}{7}+\dfrac{1}{9}\right)=2\\ \Rightarrow\left(2-x\right)\left(\dfrac{1}{7}+\dfrac{1}{9}\right)=0\\ \Rightarrow2-x=0\\ \Rightarrow x=2\)
thay x = 2 vào 1 ta có:
\(\Rightarrow\dfrac{2+16}{9}=\dfrac{x+y+z}{50}\\ \Rightarrow\dfrac{18}{9}=\dfrac{x+y+z}{50}\\ \Rightarrow2=\dfrac{x+y+z}{50}\\ \Rightarrow x+y+z=2.50\\ \Rightarrow x+y+z=100\)
vậy x + y + z = 100
cho \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\) và \(2x^3-1=15\) tính \(B=x+y+z\)
Ta có: \(2x^3-1=15\Leftrightarrow x^3=8\Rightarrow x=2\)
\(\Rightarrow\dfrac{18}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\Rightarrow\left\{{}\begin{matrix}\dfrac{y-25}{16}=2\Rightarrow y=57\\\dfrac{z+9}{25}=2\Rightarrow z=41\end{matrix}\right.\)
Vậy \(B=x+y+z=2+57+41=100\)
`2x^3-1=15=>2x^3=16=>x^3=8=>x=2`
Có:`[x+16]/9=[y-25]/16`
`=>[2+16]/9=[y-25]/16=>y=57`
Có:`[x+16]/9=[z+9]/25`
`=>[2+16]/9=[z+9]/25=>z=41`
Ta có:`B=x+y+z=2+57+41=100`
Tính x+y+z Biết \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)và 2x3=y-z
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{y-z-25-9}{16-25} \)
\(<=>\frac{x+16}{9}=\frac{2x^3-34}{-9} \)
<=>\(-x-16=2x^3-34\)
<=>\(2x^3+x-18=0\)
=> x=2
=>\(\frac{2+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=2\)
=>y=57
=>z=41
Bài 4: Cho\(\dfrac{25+x}{9}\) = \(\dfrac{51-y}{16}\) = \(\dfrac{70+z}{25}\) với\(\sqrt{9}\) . y3 -\(\sqrt{16}\) = 7.\(\sqrt{121}\)
Tính x + y + z
Help me! Thanks a lot!
Cho \(\dfrac{x+16}{9}=\dfrac{y-5}{16}=\dfrac{z+9}{25}\)và 2x3-1=15. Tính B=x+y+z
2x^3-1=15
=>2x^3=16
=>x=2
(x+16)/9=(y-5)/16=(z+9)/25
=>(y-5)/16=(z+9)/25=2
=>y-5=32 và z+9=50
=>y=37 và z=41
B=x+y+z=2+37+41=80
Tìm x;y;z
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\) và \(2x^3-1=1\)
cho \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\) và \(2x^3-1=15\) Tính B=x+y+z
Ta có :
\(2x^3-1=15\)
\(\Leftrightarrow2x^3=16\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x=2\)
Thay \(x=2\) zô : \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
\(\Leftrightarrow\dfrac{2+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
\(\Leftrightarrow\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
+) \(\dfrac{y-25}{16}=2\)
\(\Leftrightarrow y-25=32\)
\(\Leftrightarrow y=57\)
+) \(\dfrac{z+9}{25}=2\)
\(\Leftrightarrow z+9=50\)
\(\Leftrightarrow z=41\)
Ta có :
\(\left\{{}\begin{matrix}x=2\\y=57\\z=41\end{matrix}\right.\) \(\Leftrightarrow x+y+z=2+57+41=100\)
Cho \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\) và \(2x^3-1=15\). Tính B = \(x+y+z\)
\(2x^3-1=15\)
\(\Rightarrow2x^3=16\)
\(\Rightarrow x^3=8\)
\(\Rightarrow x=2\)
Thay x vào \(\dfrac{x+16}{9}=\dfrac{y-25}{16}+\dfrac{z+9}{25}\) thì tìm được y và z
Tính nốt x + y + z
\(2x^3-1=15\)
\(2x^3=16\)
\(x^3=8\)
\(\Rightarrow x=2\)
\(\dfrac{x+16}{9}=\dfrac{y+25}{16}=\dfrac{z+9}{25}\)
\(\Leftrightarrow\dfrac{2+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
\(\Leftrightarrow\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
\(\Rightarrow\dfrac{y-25}{16}=2\)
\(\Rightarrow y-25=32\)
\(\Rightarrow y=57\)
\(\Rightarrow\dfrac{z+9}{25}=2\)
\(\Rightarrow z+9=50\)
\(\Rightarrow z=41\)
\(\Rightarrow\)\(x=2\) , \(y=57\) , \(z=41.\)
\(B=x+y+z\)
\(B=2+57+41\)
\(B=100\)
Vậy \(B=100\)
Tìm \(x,y\in N\):
a) 32x+1 . 7y = 9 . 21x
b) \(\dfrac{27^x}{3^{2x-y}}=243\) và \(\dfrac{25^x}{5^{x+y}}=125\)
Lời giải:
a)
$3^{2x+1}.7^y=9.21^x=3^2.(3.7)^x=3^{2+x}.7^x$
Vì $x,y$ là số tự nhiên nên suy ra $2x+1=2+x$ và $y=x$
$\Rightarrow x=y=1$
b) \(\frac{27^x}{3^{2x-y}}=\frac{3^{3x}}{3^{2x-y}}=3^{x+y}=243=3^5\Rightarrow x+y=5(1)\)
\(\frac{25^x}{5^{x+y}}=\frac{5^{2x}}{5^{x+y}}=5^{x-y}=125=5^3\Rightarrow x-y=3\) $(2)$
Từ $(1);(2)\Rightarrow x=4; y=1$
\(\dfrac{x^2+xy+y^2}{3}=25;\dfrac{z^2+y^2}{3}=9;x^2+xz+z^2=16\left(x,z\ne0;x\ne-z\right) CMR:\dfrac{2x}{y}=\dfrac{x+y}{y+z}\)