tìm max của M = \(x+\sqrt{2-x}\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Tìm max của M = \(\frac{\sqrt{x-2017}}{x+2}+\frac{\sqrt{x-2018}}{x}\)
\(\frac{\sqrt{\left(x-2017\right)2019}}{\sqrt{2019}\left(x+2\right)}+\frac{\sqrt{\left(x-2018\right)2018}}{\sqrt{2018}x}\le\frac{x-2017+2019}{2\sqrt{2019}\left(x+2\right)}+\frac{x-2018+2018}{2\sqrt{2018}x}\)
\(=\frac{1}{2\sqrt{2019}}+\frac{1}{2\sqrt{2018}}\)
''='' khi x=4036
tìm min và max của : \(\sqrt{2+x}+\sqrt{2-x}-\sqrt{4-x^2}\)
Lời giải:
Đặt $\sqrt{2+x}=a; \sqrt{2-x}=b$. ĐK: $a,b\geq 0$
$a^2+b^2=4$
Gọi biểu thức cần tìm min max là $D$
$D=a+b-ab=(a-2)(2-b)+4-(a+b)$
Vì $a^2+b^2=4\Rightarrow a,b\leq 2$
$\Rightarrow (a-2)(2-b)\leq 0$
Mặt khác: $a^2+b^2=4\Rightarrow (a+b)^2=4+2ab\geq 4$
$\Rightarrow a+b\geq 2$
Do đó: $D=(a-2)(2-b)+4-(a+b)\leq 4-(a+b)\leq 2$
Vậy $D_{\max}=2$ khi $x=\pm 2$
--------------------
$4=a^2+b^2\geq 2ab\Rightarrow ab\leq 2$
$D=a+b-ab=\sqrt{4+2ab}-ab$
$=\sqrt{4+2ab}-2\sqrt{2}-(ab-2)+2\sqrt{2}-2$
$=\frac{2(ab-2)}{\sqrt{4+2ab}+2\sqrt{2}}-(ab-2)+2\sqrt{2}-2$
$=(ab-2)(\frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1)+2\sqrt{2}-2$
Vì $ab\leq 2\rightarrow ab-2\leq 0$
$ab\geq 0\Rightarrow \frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1 <\frac{2}{\sqrt{4}+2\sqrt{2}}-1<0$
$\Rightarrow D\geq 0+2\sqrt{2}-2=2\sqrt{2}-2$
Vậy $D_{\min}=2\sqrt{2}-2$ khi $x=0$
Tìm max của: \(\dfrac{\sqrt{x}}{x-2\sqrt{x}+9}\)
\(\forall x\in R\Rightarrow A=\dfrac{\sqrt{x}}{x-2\sqrt{x}+9}\Leftrightarrow A\left(x-2\sqrt{x}+9\right)=\sqrt{x}\)
\(\Leftrightarrow Ax-2A\sqrt{x}-\sqrt{x}+9A=0\)
\(\Leftrightarrow A\sqrt{x}^2-\sqrt{x}\left(2A+1\right)+9A=0\)
\(\Rightarrow\Delta\ge0\Rightarrow\left(2A+1\right)^2-36A^2=-32A^2+4A+1\ge0\Rightarrow-\dfrac{1}{8}\le A\le\dfrac{1}{4}\Rightarrow A\le\dfrac{1}{4}\Rightarrow MaxA=\dfrac{1}{4}\)
\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=9\)
Cho \(M=\frac{2}{\sqrt{x}-1}+\frac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{x\sqrt{x}-1}\)
a)Tìm ĐKXĐ,rút gọn
b)tim max của M
Tìm Max của M:
\(M=\sqrt{x-1}+\sqrt{9-x}\)
Ta có M2 = 8 + 2√[(x - 1)(9 - x)] <= 8 + (x - 1) + (9 - x) = 8 + 8 = 16
=> M <= 4 đạt GTLN tại x = 5
1. Tìm max
\(M=\dfrac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
2. Cho a,b,c >0 và a+b+c=\(\sqrt{2}\)
Tìm max \(N=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)
\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)
\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)
P= \((\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}). \dfrac{(1-x)^2}{2}\)
a) tìm Tập xác định, rút gọn P
b) c/m nếu 0<x<1=> P>0
c) Tìm P max
a: ĐKXĐ: x>=0; x<>1
\(P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\cdot\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{2}\cdot\dfrac{x-1}{\sqrt{x}+1}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b: 0<x<1
=>căn x<1
=>căn x-1<0
=>căn x*(căn x-1)<0
=>-căn x*(căn x-1)>0
=>P>0
c: \(P=-x+\sqrt{x}-\dfrac{1}{4}+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/4
Cho x,y,z là 3 số dương . Tìm Max của P=\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Tìm Max của M=\(\sqrt{x-2}+\sqrt{y+4}\) biết x+y=8
\(3-2P=\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{xz}}+\frac{z}{z+2\sqrt{xy}}\)
\(3-2P\ge\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)
\(\Rightarrow2P\le2\Rightarrow P\le1\)
Dấu "=" xảy ra khi \(x=y=z\)
\(M\le\sqrt{\left(1+1\right)\left(x+y+2\right)}=\sqrt{20}=4\sqrt{5}\)
\(M_{max}=4\sqrt{5}\) khi \(\left\{{}\begin{matrix}x-2=y+4\\x+y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Tìm max của M
M=\(\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\)
Help
ĐKXĐ: x>=0
\(M=\dfrac{\sqrt{x}+2+1}{\sqrt{x}+2}=1+\dfrac{1}{\sqrt{x}+2}\)
\(\sqrt{x}+2>=2\)
=>\(\dfrac{1}{\sqrt{x}+2}< =\dfrac{1}{2}\)
=>\(M=1+\dfrac{1}{\sqrt{x}+2}< =\dfrac{1}{2}+1=\dfrac{3}{2}\)
Dấu = xảy ra khi x=0