Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:09

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

Nguyễn Việt Lâm
30 tháng 12 2021 lúc 23:10

\(\sqrt{5x^2+2xy+2y^2}=\sqrt{4x^2+2xy+y^2+x^2+y^2}\ge\sqrt{4x^2+2xy+y^2+2xy}=2x+y\)

\(\Rightarrow\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}\le\dfrac{1}{2x+y}=\dfrac{1}{x+x+y}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}\le\dfrac{1}{9}\left(\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{\sqrt{5z^2+2zx+2x^2}}\le\dfrac{1}{9}\left(\dfrac{2}{z}+\dfrac{1}{x}\right)\)

Cộng vế:

\(P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=1\)

\(P_{max}=1\) khi \(x=y=z=1\)

dia fic
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 10:51

\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)

 

Tobot Z
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2019 lúc 22:15

\(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=2\)

Lại có \(\dfrac{1}{2x+y+z}=\dfrac{1}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)

Tương tự \(\dfrac{1}{x+2y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

Cộng vế với vế: \(P\le\dfrac{1}{2}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{1}{2}.2=1\)

\(\Rightarrow P_{max}=1\) khi \(x=y=z=\dfrac{3}{4}\)

Thu Nguyễn
Xem chi tiết
Trai Vô Đối
Xem chi tiết
Kuro Kazuya
13 tháng 7 2017 lúc 14:09

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\Sigma\dfrac{1}{2x+3y+3z}\le\Sigma\dfrac{1}{16}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)

\(\Rightarrow P\le\dfrac{4}{16}\Sigma\left(\dfrac{1}{x+y}\right)=\dfrac{2017}{4}\)

Dấu " = " xảy ra khi \(x=y=z=\dfrac{3}{4034}\)

LA.Lousia
Xem chi tiết
ひまわり(In my personal...
26 tháng 12 2020 lúc 23:41

lớp 10 rồi ....... khá là khó 

Hồng Phúc
26 tháng 12 2020 lúc 23:47

\(x^2+2y^2+3=x^2+y^2+y^2+1+2\ge2xy+2y+2\)

\(z^2+2x^2+3\ge2zx+2x+2\)

\(y^2+2z^2+3\ge2yz+2z+2\)

Dễ chứng minh được \(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}=1\)

\(\Rightarrow\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{z^2+2x^2+3}+\dfrac{1}{y^2+2z^2+3}\)

\(\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Beautiful Angel
Xem chi tiết
Hung nguyen
28 tháng 4 2017 lúc 9:03

Ta đặt: \(\left\{{}\begin{matrix}\dfrac{1}{x^2}=a\\\dfrac{1}{y^2}=b\\\dfrac{1}{z^2}=c\end{matrix}\right.\)\(\Rightarrow\sqrt{abc}=abc=1\)

Ta có: \(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\dfrac{1}{\sqrt{a}}+1}+\dfrac{1}{\dfrac{1}{\sqrt{ab}}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{\sqrt{a}}{\sqrt{ba}+1+\sqrt{a}}+\dfrac{1}{1+\sqrt{ab}+\sqrt{a}}=1\)

Quay lại bài toán, sau khi đặt bài toán trở thành:

\(P=\dfrac{1}{2b+a+3}+\dfrac{1}{2c+b+3}+\dfrac{1}{2a+c+3}\)

\(=\dfrac{1}{\left(a+b\right)+\left(b+1\right)+2}+\dfrac{1}{\left(b+c\right)+\left(c+1\right)+2}+\dfrac{1}{\left(c+a\right)+\left(a+1\right)+2}\)

\(\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\right)=\dfrac{1}{2}\)

Hung nguyen
28 tháng 4 2017 lúc 21:49

Cái đó t cố tình bỏ đấy. B phải tự làm chứ chẳng lẽ t làm hết??

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết