gpt:
\(x-\sqrt{x-8}-3\sqrt{x}+1=0\)
\(x^3+\frac{x^3}{(x-1)^3}+\frac{3x^2}{x-1}-2=0\)
gpt : a) \(\frac{5x}{\sqrt{4-x^2}}+\frac{8}{x^2}+\frac{2x}{4-x^2}+\frac{5\sqrt{4-x^2}}{x}+4=0\)
b) \(\frac{2x}{\sqrt{8x^2+25}}+\frac{125}{x^2}-14=0\)
c) \(\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)
d) \(\sqrt{x^2-x+6}+\frac{4}{x-1}=x^2+x\)
Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ
Mn giúp em vs ạ! Thanks trước!
\(c,\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x^2-3x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow x=1\)
Hoặc là: \(\Rightarrow\left(x+2\right)\left(x-1\right)\sqrt{3x-2}-2x\left(x-2\right)=0\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Còn cần nữa không, hôm bữa chị giải ra câu a mà quên béng mất, mấy hôm lại bận làm thuyết trình Tiếng Anh nên bỏ dở.
Giờ mà cần chị cũng chỉ làm được câu a thôi '-'
GPT \(x^2-3x+1+\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}=0\)
\(3\left(x^2-3x+2\right)+\sqrt{3}\left(\sqrt{x^4+x^2+1}-\sqrt{3}\right)=0\)
\(3\left(x-1\right)\left(x-2\right)+\sqrt{3}.\frac{x^4+x^2-2}{\sqrt{x^4+x^2+1}+\sqrt{3}}=0\)
\(3\left(x-1\right)\left(x-2\right)+\sqrt{3}.\frac{\left(x-1\right)\left(x^3+x^2+2x+2\right)}{\sqrt{x^4+x^2+1}+\sqrt{3}}=0\)
GPT
\(x^2-3\sqrt[3]{3x-2}-12+\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+8}{x}\)
gpt:
\(3\left(x^2-3x+1\right)+\sqrt{3\left(x^4+x^2+1\right)}=0\)
\(\sqrt[3]{x^3+5x^2}-1=\sqrt{\frac{5x^2-2}{6}}\)
a,GPT \(\sqrt{x^3+12}-3x=\sqrt{x^2+5}-5\)
b,Cho x,y,z>0 thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=3\)TÌM GTNN \(P=\frac{\sqrt{x}+1}{y+1}+\frac{\sqrt{y}+1}{z+1}+\frac{\sqrt{z}+1}{x+1}\)
b, Ta có
\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)
Mà \(y+1\ge2\sqrt{y}\)
=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)
Khi đó
\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)
Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)
=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)
Vậy MinP=3 khi x=y=z=1
gpt : a) \(\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
b) \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)
c) \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)
b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:
* Với \(x>-2\) thì
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)
* Với \(x< -2\) thì
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)
Do đó pt có nghiệm duy nhất \(x=-2\)
c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)
\(\Rightarrow a^4+b^4=2\)
Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)
Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)
a,\(^{lim}_{x->2}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
b, \(^{lim}_{x->0}\frac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
c, \(^{lim}_{x->1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)
d,\(^{lim}_{x->0}\frac{\sqrt{1+2x}.\sqrt[3]{1+4x}-1}{x}\)
e,\(^{lim}_{x->1}\frac{x^4-1}{x^3-2x^2+x}\)
f,\(^{lim}_{x->1}\left(\frac{1}{1-x}-\frac{3}{1-x^3}\right)\)
Giải các phương trình:
\(a,2x^2+1+\sqrt{8x^3+1}=0\)
\(2x+9+\sqrt{4x^2+36x+17}=\frac{8}{x}\)
\(c,\sqrt[3]{2x-1}-\sqrt{2x}=\sqrt[3]{x^3+1}-x\)
\(d,\sqrt{3x+1}-+\sqrt{6-x}+3x^2-14x-8=0\)
\(e,2\sqrt{\frac{x^2+x+1}{x+4}}+x^2-4=\frac{2}{\sqrt{x^2+1}}\)
\(\sqrt{x^2+8}-7x=\sqrt{x^2+3}-6\)(1)
\(\Leftrightarrow\sqrt{x^2+8}-3=7x-7+\sqrt{x^2+3}-2\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+8}-3\right)\left(\sqrt{x^2+8}+3\right)}{\left(\sqrt{x^2+8}+3\right)}=7\left(x-1\right)+\frac{\left(\sqrt{x^2+3}-2\right)\left(\sqrt{x^2+3}+2\right)}{\sqrt{x^2+3}+2}\)
\(\Leftrightarrow\frac{x^2+8-9}{\left(\sqrt{x^2+8}+3\right)}=7\left(x-1\right)+\frac{x^2-1}{\sqrt{x^2+3}+2}\)
\(\Leftrightarrow\frac{x^2-1}{\sqrt{x^2+8}+3}-7\left(x-1\right)-\frac{x^2-1}{\sqrt{x^2+3+2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+8}+3}-7-\frac{x+1}{\sqrt{x^2+3}+2}\right)=0\)
\(\Leftrightarrow x-1=0\)
hay \(\frac{x+1}{\sqrt{x^2+8}+3}-7-\frac{x+1}{\sqrt{x^2+3}+2}=0\)(2)
Từ (1), có:
\(\sqrt{x^2+8}-\sqrt{x^2+3}=7x-6>0\)
\(\Leftrightarrow7x-6>0\)
\(\Leftrightarrow x>\frac{6}{7}\)
Khi đó, có:
\(\frac{x+1}{\sqrt{x^2+8}+3}-\frac{\sqrt{x+1}}{\sqrt{x^2+3}+2}<0\)
\(\Rightarrow\frac{x+1}{\sqrt{x^2+8}+3}-\frac{x+1}{\sqrt{x^2+3}+2}-7<0\)
Vậy, pt (2) vô nghiệm
Do đó, pt (1) có 1 nghiệm là x = 1