b) ĐKXĐ: \(x\ne1\)
Ta có:
\(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)
\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^3-3x.\frac{x}{x-1}\left(x+\frac{x}{x-1}\right)+\frac{3x^2}{x-1}-2=0\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^3-3\left(\frac{x^2}{x-1}\right)^2+\frac{3x^2}{x-1}-2=0\)
Đặt \(\frac{x^2}{x-1}=a\)
Khi đó pt đã cho trở thành:
\(a^3-3a^2+3a-2=0\)
\(\Leftrightarrow\left(a-1\right)^3=1\Rightarrow a-1=1\Leftrightarrow a=2\)
Theo cách đặt: \(\frac{x^2}{x-1}=2\Rightarrow x^2=2x-2\Leftrightarrow x^2-2x+1=-1\Leftrightarrow\left(x-1\right)^2=-1\left(ptvn\right)\)
a) ĐKXĐ: \(x\ge8\)
Ta có:
\(x-\sqrt{x-8}-3\sqrt{x}+1=0\)
\(\Leftrightarrow x-9-\left(\sqrt{x-8}-1\right)-3\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow x-9-\frac{x-9}{\sqrt{x-8}+1}-3.\frac{x-9}{\sqrt{x}+3}=0\)
\(\Leftrightarrow\left(x-9\right)\left(\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-9=0\\\frac{3}{\sqrt{x}+3}+\frac{1}{\sqrt{x-8}+1}-1=0\end{cases}}\)
+) \(x-9=0\Leftrightarrow x=9\left(TMĐKXĐ\right)\)
+) \(\frac{3}{\sqrt{x}+3}=\frac{\sqrt{x-8}}{\sqrt{x-8}+1}\Rightarrow\sqrt{x\left(x-8\right)}=3\)
\(\Leftrightarrow x^2-8x-9=0\Leftrightarrow\orbr{\begin{cases}x=9TMĐKXĐ\\x=-1\left(KTMĐKXĐ\right)\end{cases}}\)
Vaayh pt có 1 nghiệm là x=9