rút gọn:
\(x+\sqrt{x}-6\)
rút gọn
\(\sqrt{x+12+6\sqrt{x+3}}-\sqrt{x+12-6\sqrt{x+3}}\) ( x>6)
P=\(\dfrac{3\sqrt{x}+6}{x-4}\) -\(\dfrac{\sqrt{x}}{2-\sqrt{x}}\)
Rút gọn
P = \(\dfrac{3\sqrt{x}+6}{x-4}-\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (x \(\ne\) 4; x \(\ge\) 0)
P = \(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}\)
P = \(\dfrac{3\sqrt{x}+6+\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}\)
P = \(\dfrac{3\sqrt{x}+6+x+2\sqrt{x}}{x-4}\)
P = \(\dfrac{x+5\sqrt{x}+6}{x-4}\)
P = \(\dfrac{x+2\sqrt{x}+3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
Vậy ...
Chúc bn học tốt!
Lời giải:
ĐKXĐ: $x\neq 4; x\geq 0$
\(P=\frac{3(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{3}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{3+\sqrt{x}}{\sqrt{x}-2}\)
Ta có: \(\dfrac{3\sqrt{x}+6}{x-4}-\dfrac{\sqrt{x}}{2-\sqrt{x}}\)
\(=\dfrac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(=\dfrac{3}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
Câu 1: Rút gọn biểu thức: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{2}}+\dfrac{6}{x+3\sqrt{x}}\right)\) với x > 0
Câu 2: Rút gọn biểu thức:
\(P=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\) với x > 0; x \(\ne\) 2
Câu 3: Rút gọn biểu thức:
\(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\) với a > 0; a \(\ne\) 4
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
rút gọn B:
B=\(\dfrac{2\sqrt{X}}{\sqrt{X}-2}-\dfrac{X+6\sqrt{X}-4}{X-\sqrt{X}-2}\)
B= \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{x+6\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
B= \(\dfrac{2\sqrt{x}\left(\sqrt{x}+1\right)-x-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
B= \(\dfrac{2x+2\sqrt{x}-x-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
B= \(\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
B= \(\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Cho biểu thức P= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{3}{\sqrt{x}+1}\)-\(\dfrac{6\sqrt{x}-4}{x-1}\) Với x >=0 , x khác 1
a) Rút gọn biểu thức ( câu này mình rút gọn = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\))
b) Tìm giá trị của x để P =-1
c) Tìm x thuộc z để P thuộc z
d) Só ánh P với 1
e)Tìm giá trị nhỏ nhất của P
mình đag cần gấp ạ!
a) \(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Kết hợp đk:
\(\Rightarrow x\in\left\{0\right\}\)
d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)
\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}\in Z\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow2⋮\sqrt{x}+1\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\\ \Leftrightarrow x\in\left\{0;1\right\}\)
\(d,P=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Có \(\dfrac{2}{\sqrt{x}+1}>0\left(2>0;\sqrt{x}+1>0\right)\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}< 1\Leftrightarrow P< 1\)
\(e,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Có \(\sqrt{x}+1\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\le2\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)
\(P_{min}=-1\Leftrightarrow x=0\)
Rút gọn biểu thức A= \(\dfrac{-7\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
`A=(-7sqrtx+6)/(x-4)+sqrtx/(sqrtx-2)`
`=(-7sqrtx+6)/(x-4)+(x+2sqrtx)/(x-4)`
`=(x+2sqrtx-7sqrtx+6)/(x-4)`
`=(x-5sqrtx+6)/(x-4)`
`=((sqrtx-2)(sqrtx-3))/((sqrtx-2)(sqrtx+2))`
`=(sqrtx-3)/(sqrtx+2)`
Rút gọn:
\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{x+2\sqrt{x}-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(=\dfrac{x+2\sqrt{x}-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
( \(\dfrac{3\sqrt{x}+6}{x-4}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) ) : \(\dfrac{x-9}{\sqrt{x}-3}\)
rút gọn biểu thức
\(\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\left(dkxd:x\ne9,x\ne4,x\ge0\right)\)
\(=\left(\dfrac{3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}-3}\)
\(=\left(\dfrac{3\sqrt{x}+6+\sqrt{x}\left(\sqrt{x}+2\right)}{(\sqrt{x}-2)\left(\sqrt{x}+2\right)}\right).\dfrac{1}{\sqrt{x}+3}\)
\(=\dfrac{3\sqrt{x}+6+x+2\sqrt{x}}{x-4}.\dfrac{1}{\sqrt{x}+3}\)
\(=\dfrac{x+5\sqrt{x}+6}{x-4}.\dfrac{1}{\sqrt{x}+3}\)
\(=\dfrac{x+2\sqrt{x}+3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)
\(=\dfrac{1}{\sqrt{x}-2}\)
\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
Rút gọn ạ
đk : x >= 0 ; x khác 1
\(=\dfrac{x+2\sqrt{x}-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
rút gọn \(\left(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\) với x > 0
\(\left(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(\sqrt{6x}+\dfrac{\sqrt{6x}}{3}+\sqrt{6x}\right):\sqrt{6x}\)
\(=1+\dfrac{1}{3}+1=\dfrac{7}{3}\)