Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc linh
Xem chi tiết
I LOVE BTS
Xem chi tiết
Trương Huy Hoàng
17 tháng 2 2021 lúc 13:15

P = \(\dfrac{3\sqrt{x}+6}{x-4}-\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (x \(\ne\) 4; x \(\ge\) 0)

P = \(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}\)

P = \(\dfrac{3\sqrt{x}+6+\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}\)

P = \(\dfrac{3\sqrt{x}+6+x+2\sqrt{x}}{x-4}\)

P = \(\dfrac{x+5\sqrt{x}+6}{x-4}\)

P = \(\dfrac{x+2\sqrt{x}+3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

Vậy ...

Chúc bn học tốt!

Akai Haruma
17 tháng 2 2021 lúc 13:16

Lời giải:

ĐKXĐ: $x\neq 4; x\geq 0$

\(P=\frac{3(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{3}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{3+\sqrt{x}}{\sqrt{x}-2}\)

Nguyễn Lê Phước Thịnh
17 tháng 2 2021 lúc 13:24

Ta có: \(\dfrac{3\sqrt{x}+6}{x-4}-\dfrac{\sqrt{x}}{2-\sqrt{x}}\)

\(=\dfrac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(=\dfrac{3}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

DŨNG
Xem chi tiết
Lê Anh Khoa
29 tháng 4 2022 lúc 21:28

B= \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{x+6\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B= \(\dfrac{2\sqrt{x}\left(\sqrt{x}+1\right)-x-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B= \(\dfrac{2x+2\sqrt{x}-x-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B= \(\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\) 

B= \(\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

Lê Kiều Trinh
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 10 2021 lúc 18:10

a) \(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp đk:

\(\Rightarrow x\in\left\{0\right\}\)

d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)

 

Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 18:11

\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}\in Z\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow2⋮\sqrt{x}+1\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\\ \Leftrightarrow x\in\left\{0;1\right\}\)

\(d,P=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Có \(\dfrac{2}{\sqrt{x}+1}>0\left(2>0;\sqrt{x}+1>0\right)\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}< 1\Leftrightarrow P< 1\)

\(e,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Có \(\sqrt{x}+1\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\le2\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)

\(P_{min}=-1\Leftrightarrow x=0\)

 

Linh Bùi
Xem chi tiết
Yeutoanhoc
10 tháng 6 2021 lúc 17:18

`A=(-7sqrtx+6)/(x-4)+sqrtx/(sqrtx-2)`

`=(-7sqrtx+6)/(x-4)+(x+2sqrtx)/(x-4)`

`=(x+2sqrtx-7sqrtx+6)/(x-4)`

`=(x-5sqrtx+6)/(x-4)`

`=((sqrtx-2)(sqrtx-3))/((sqrtx-2)(sqrtx+2))`

`=(sqrtx-3)/(sqrtx+2)`

nguyenyennhi
Xem chi tiết
Ngô Bá Hùng
6 tháng 3 2022 lúc 8:42

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{x+2\sqrt{x}-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 8:41

\(=\dfrac{x+2\sqrt{x}-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
YangSu
18 tháng 6 2023 lúc 15:30

\(\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\left(dkxd:x\ne9,x\ne4,x\ge0\right)\)

\(=\left(\dfrac{3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}-3}\)

\(=\left(\dfrac{3\sqrt{x}+6+\sqrt{x}\left(\sqrt{x}+2\right)}{(\sqrt{x}-2)\left(\sqrt{x}+2\right)}\right).\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{3\sqrt{x}+6+x+2\sqrt{x}}{x-4}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{x+5\sqrt{x}+6}{x-4}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{x+2\sqrt{x}+3\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}+3}\)

\(=\dfrac{1}{\sqrt{x}-2}\)

nguyenyennhi
Xem chi tiết
Nguyễn Huy Tú
4 tháng 3 2022 lúc 19:22

đk : x >= 0 ; x khác 1 

\(=\dfrac{x+2\sqrt{x}-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

Uyên
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 11 2021 lúc 18:43

\(\left(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)

\(=\left(\sqrt{6x}+\dfrac{\sqrt{6x}}{3}+\sqrt{6x}\right):\sqrt{6x}\)

\(=1+\dfrac{1}{3}+1=\dfrac{7}{3}\)