Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kimm
Xem chi tiết
Lê Trang
25 tháng 6 2021 lúc 21:21

\(A=\left|2-\sqrt{7}\right|+7-2\sqrt{7}+1\)

\(=\sqrt{7}-2+8-2\sqrt{7}\) \(=6-\sqrt{7}\)

\(B=3\cdot1,5-4\cdot\left|3-\sqrt{2}\right|\) \(=4,5-4\left(3-\sqrt{2}\right)\)

\(=4,5-12+4\sqrt{2}\) \(=4\sqrt{2}-7,5\) 

Nguyễn Lê Phước Thịnh
25 tháng 6 2021 lúc 22:10

Ta có: \(A=\sqrt{\left(2-\sqrt{7}\right)^2}+\left(\sqrt{7}-1\right)^2\)

\(=\sqrt{7}-2+8-2\sqrt{7}\)

\(=6-\sqrt{7}\)

títtt
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 1 lúc 20:56

\(D=a^{\dfrac{7}{2}}.a^{\dfrac{1}{3}}.a^{\dfrac{7}{4}}=a^{\dfrac{7}{2}+\dfrac{1}{3}+\dfrac{7}{4}}=a^{\dfrac{67}{12}}=\sqrt[12]{a^{67}}\)

\(D=a^{\sqrt{2}-1}.a^{2\sqrt{2}}.a^{3-3\sqrt{2}}=a^{\sqrt{2}-1+2\sqrt{2}+3-3\sqrt{3}}=a^2\)

\(D=\left(\sqrt{a}\right)^7\cdot\left(\sqrt[3]{a}\right)\left(\sqrt[4]{a}\right)^7\)

\(=a^{\dfrac{1}{2}\cdot7}\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{4}\cdot7}\)

\(=a^{\dfrac{7}{2}+\dfrac{1}{3}+\dfrac{7}{4}}=a^{\dfrac{67}{12}}\)

b: \(D=a^{\sqrt{2}-1}\cdot\left(a^2\right)^{\sqrt{2}}\cdot\left(a^3\right)^{1-\sqrt{2}}\)

\(=a^{\sqrt{2}-1}\cdot a^{2\sqrt{2}}\cdot a^{3-3\sqrt{2}}\)

\(=a^{\sqrt{2}-1+2\sqrt{2}+3-3\sqrt{2}}=a^2\)

Nguyễn Thị Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 21:04

b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)

\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)

\(=4\left(7+3\sqrt{5}\right)\)

\(=28+12\sqrt{5}\)

Akai Haruma
5 tháng 10 2021 lúc 21:21

Lời giải:

a. 

$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$

$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$

$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$

$=2\sqrt{5}-5\sqrt{10}$

$\Rightarrow A=\sqrt{10}-5\sqrt{5}$

b.

$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$

$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$

$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$

$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$

$\Rightarrow B=28+12\sqrt{5}$

c.

$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$

$=(7-5)(6-\sqrt{35})$

$=2(6-\sqrt{35})=12-2\sqrt{35}$

Thai Nguyen
Xem chi tiết
Nguyễn Thanh Huyền
Xem chi tiết
Yeutoanhoc
20 tháng 6 2021 lúc 22:27

`a)A=(3-sqrt5)sqrt{3+sqrt5}+(3+sqrt5)sqrt{3-sqrt5}`

`=sqrt{3-sqrt5}sqrt{3+sqrt5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`

`=sqrt{9-5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`

`=2(sqrt{3+sqrt5}+sqrt{3-sqrt5})`

`=sqrt2(sqrt{6+2sqrt5}+sqrt{6-2sqrt5})`

`=sqrt2(sqrt{(sqrt5+1)^2}+sqrt{(sqrt5+1)^2})`

`=sqrt2(sqrt5+1+sqrt5-1)`

`=sqrt{2}.2sqrt5`

`=2sqrt{10}`

Yeutoanhoc
20 tháng 6 2021 lúc 22:33

`b)B=(5+sqrt{21})(sqrt{14}-sqrt6)sqrt{5-sqrt{21}}`

`=sqrt{5+sqrt{21}}sqrt{5-sqrt{21}}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`

`=sqrt{25-21}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`

`=2sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`

`=2sqrt2sqrt{5+sqrt{21}}(sqrt{7}-sqrt3)`

`=2sqrt{10+2sqrt{21}}(sqrt{7}-sqrt3)`

`=2sqrt{(sqrt3+sqrt7)^2}(sqrt{7}-sqrt3)`

`=2(sqrt3+sqrt7)(sqrt{7}-sqrt3)`

`=2(7-3)`

`=8`

`c)C=sqrt{4+sqrt7}-sqrt{4-sqrt7}`

`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`

`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7+1)^2/2}`

`=(sqrt7+1)/sqrt2-(sqrt7-1)/2`

`=2/sqrt2=sqrt2`

Yeutoanhoc
20 tháng 6 2021 lúc 22:36

`d)D=\sqrt{2+sqrt3}+sqrt{14-5sqrt3}+sqrt2`

`=>sqrt2D=sqrt{4+2sqrt3}+sqrt{28-10sqrt3}+2`

`=>sqrt2D=sqrt{(sqrt3+1)^2}+sqrt{(5-sqrt3)^2}+2`

`=>sqrt2D=8`

`=>D=4sqrt2`

Dark Killer
Xem chi tiết
títtt
Xem chi tiết

loading...  loading...  loading...  loading...  

prayforme
Xem chi tiết
Nguyễn Thị Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:28

a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)

\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)

=7-2

=5

d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)

\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)

\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)

\(=4\sqrt{7}\)