Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
camcon
Xem chi tiết

Dạng này lâu quá quên cách làm rồi, thử vài cách xem cái nào tối ưu:

Sử dụng tam thức bậc 2:

Hàm xác định trên R khi:

\(2sin^2x-m.sinx+1>0;\forall x\in R\)

Đặt \(sinx=t\in\left[-1;1\right]\)

\(\Rightarrow f\left(t\right)=2t^2-m.t+1>0;\forall t\in\left[-1;1\right]\)

\(\Delta=m^2-8\)

TH1: \(\Delta< 0\Rightarrow-2\sqrt{2}< m< 2\sqrt{2}\)

Khi đó \(f\left(t\right)>0;\forall t\in R\)

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\dfrac{b}{2a}=\dfrac{m}{4}\notin\left[-1;1\right]\end{matrix}\right.\)  \(\Rightarrow\) ko có m thỏa mãn

TH3:  \(\left\{{}\begin{matrix}\Delta>0\\t_1< t_2< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-8>0\\f\left(-1\right)=m+3>0\\\dfrac{t_1+t_2}{2}=\dfrac{m}{4}< -1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

TH4: \(\left\{{}\begin{matrix}\Delta>0\\1< t_1< t_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-8>0\\f\left(1\right)=3-m>0\\\dfrac{t_1+t_2}{2}=\dfrac{m}{4}>1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

Vậy \(-2\sqrt{2}< m< 2\sqrt{2}\)

 

- Sử dụng hẳng đẳng thức:

\(2sin^2x-m.sinx+1>0\)

\(\Leftrightarrow16sin^2x-8m.sinx+8>0\)

\(\Leftrightarrow\left(4sinx-m\right)^2-m^2+8>0\)

\(\Leftrightarrow\left(4sinx-m\right)^2>m^2-8\) (1)

TH1: \(m^2-8< 0\Rightarrow\) BPT luôn đúng

TH2: \(m^2-8\ge0\), khi đó (1) tương đương:

\(\left[{}\begin{matrix}4sinx-m>\sqrt{m^2-8}\\4sinx-m< -\sqrt{m^2-8}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4sinx>m+\sqrt{m^2-8}\\4sinx< m-\sqrt{m^2-8}\end{matrix}\right.\)

Do \(sinx\in\left[-1;1\right]\) nên điều này đúng vói mọi x khi và chỉ khi:

\(\left[{}\begin{matrix}-4>m+\sqrt{m^2-8}\\4< m-\sqrt{m^2-8}\end{matrix}\right.\)  \(\Rightarrow\left[{}\begin{matrix}-1>\dfrac{m+\sqrt{m^2-8}}{4}\\1< \dfrac{m-\sqrt{m^2-8}}{4}\end{matrix}\right.\)(2)

Giải 2 cái này ra là được.

À, đến đây phát hiện ra 1 điều, thực chất \(\dfrac{m\pm\sqrt{m^2-8}}{4}\) chính là 2 nghiệm \(t_1;t_2\) của pt

\(2t^2-mt+1=0\), và 2 BPT (2) kia cũng chính là \(\left[{}\begin{matrix}t_1< t_2< -1\\1< t_1< t_2\end{matrix}\right.\) của cách 1

Vậy về cơ bản 2 cách này giống nhau về phần lõi, chỉ khác về cách trình bày

Sử dụng quy tắc cô lập m:

\(2sin^2x-m.sinx+1>0\Rightarrow2t^2-mt+1>0\) với \(t\in\left[-1;1\right]\)

- TH1: xét \(t\in\left(-1;0\right)\)

\(2t^2+1>mt\Rightarrow\dfrac{2t^2+1}{t}< m\) (do \(t< 0\) nên chia vế đảo dấu)

\(\Rightarrow m>\max\limits_{\left(-1;0\right)}\dfrac{2t^2+1}{t}\)

Có \(\dfrac{2t^2+1}{t}=2t+\dfrac{1}{t}=-\left(-2t+\left(-\dfrac{1}{t}\right)\right)\le-2\sqrt{\left(-2t\right).\left(-\dfrac{1}{t}\right)}=-2\sqrt{2}\)

\(\Rightarrow m>-2\sqrt{2}\)

TH2: xét \(t\in\left(0;1\right)\) (với t=0 hàm hiển nhiên xác định với mọi m)

\(2t^2+1>mt\Rightarrow\dfrac{2t^2+1}{t}>m\)

\(\Rightarrow m< \min\limits_{\left(0;1\right)}\dfrac{2t^2+1}{t}\)

Do \(\dfrac{2t^2+1}{t}=2t+\dfrac{1}{t}\ge2\sqrt{\dfrac{2t}{t}}=2\sqrt{2}\) (dấu = xảy ra với \(t\in\left(0;1\right)\) thỏa mãn)

\(\Rightarrow m< 2\sqrt{2}\)

Kết hợp: \(-2\sqrt{2}< m< 2\sqrt{2}\)

tranthuylinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2021 lúc 19:32

2) Phương trình hoành độ giao điểm là:

3x+m=2x-1

\(\Leftrightarrow3x-2x=-1-m\)

\(\Leftrightarrow x=-m-1\)

Để (*) cắt đồ thị của hàm số y=2x-1 tại điểm nằm trên góc vuông phần tư thứ IV thì \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m-1>0\\2x-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m>1\\2\left(-m-1\right)-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-2m-2-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-2m< 3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -1\\m>\dfrac{-3}{2}\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}< m< -1\)

Phương Ngọc Nguyễn
Xem chi tiết
Nguyễn Hải Vân
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 7 2021 lúc 22:21

1.

Đồ thị hàm bậc 3 có 2 điểm cực trị nằm về 2 phía trục hoành khi và chỉ khi \(f\left(x\right)=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow x^3+3x^2+mx+m-2=0\) có 3 nghiệm pb

\(\Leftrightarrow x^3+3x^2-2+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-2\right)+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+m-2=0\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}1-2+m-2\ne0\\\Delta'=1-\left(m-2\right)>0\end{matrix}\right.\) 

\(\Leftrightarrow m< 3\)

Nguyễn Việt Lâm
18 tháng 7 2021 lúc 22:29

2.

Pt hoành độ giao điểm:

\(\dfrac{2x-2}{x+1}=2x+m\)

\(\Rightarrow2x-2=\left(2x+m\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2+mx+m+2=0\) (1)

d cắt (C) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb

\(\Rightarrow\Delta=m^2-8\left(m+2\right)>0\Rightarrow\left[{}\begin{matrix}m>4+4\sqrt{2}\\m< 4-4\sqrt{2}\end{matrix}\right.\)

Khi đó, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{m}{2}\\x_Ax_B=\dfrac{m+2}{2}\end{matrix}\right.\)

\(y_A=2x_A+m\) ; \(y_B=2x_B+m\)

\(\Rightarrow AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(2x_A-2x_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2=1\)

\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=1\)

\(\Leftrightarrow\left(-\dfrac{m}{2}\right)^2-4\left(\dfrac{m+2}{2}\right)=1\)

\(\Leftrightarrow m^2-8m-20=0\Rightarrow\left[{}\begin{matrix}m=10\\m=-2\end{matrix}\right.\)

Nguyễn Việt Lâm
18 tháng 7 2021 lúc 22:31

3.

\(y'=x^2-2mx+2\left(m-1\right)\)

Hàm có 2 điểm cực trị nằm về cùng phía đối với trục tung khi và chỉ khi \(y'=0\) có 2 nghiệm pb cùng dấu

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-2\left(m-1\right)>0\\ac=1.2\left(m-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+2>0\left(\text{luôn đúng}\right)\\m>1\end{matrix}\right.\) 

\(\Leftrightarrow m>1\)

camcon
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2022 lúc 20:18

Hàm xác định trên \(\left[2;3\right]\) khi và chỉ khi:

\(x^2-2x-m>0;\forall x\in\left[2;3\right]\)

\(\Rightarrow x^2-2x>m;\forall x\in\left[2;3\right]\)

\(\Rightarrow m< \min\limits_{\left[2;3\right]}\left(x^2-2x\right)\)

Xét hàm \(f\left(x\right)=x^2-2x\) trên \(\left[2;3\right]\)

\(-\dfrac{b}{2a}=1\notin\left[2;3\right]\)

\(f\left(2\right)=0\) ; \(f\left(3\right)=3\)

\(\Rightarrow\min\limits_{\left[2;3\right]}\left(x^2-2x\right)=0\)

\(\Rightarrow m< 0\)

Linh Đặng
Xem chi tiết
Akai Haruma
6 tháng 10 2021 lúc 23:42

Lời giải:
Để hàm xác định trên $R$ thì $2x^2-3x+m\neq 0, \forall x\in\mathbb{R}$

$\Leftrightarrow m\neq -(2x^2-3x), \forall x\in\mathbb{R}$
Ta thấy:

$-(2x^2-3x)\in (-\infty; \frac{9}{8}]$ nên $m\in (\frac{9}{8}; +\infty)$

qui dao
Xem chi tiết
Khánh ly
Xem chi tiết
Phương Ngọc Nguyễn
Xem chi tiết
Hquynh
10 tháng 1 2023 lúc 20:57

hàm số xác định 

 \(2x-m\ge0\\ =>x\ge\dfrac{m}{2}\)

=> Tập xác định : \([\dfrac{m}{2};+\infty)\)

Để hàm số xác định trên đoạn \([2;+\infty)\)

\(2< \dfrac{m}{2}\\ =>m>4\)