hàm số xác định
\(2x-m\ge0\\ =>x\ge\dfrac{m}{2}\)
=> Tập xác định : \([\dfrac{m}{2};+\infty)\)
Để hàm số xác định trên đoạn \([2;+\infty)\)
\(2< \dfrac{m}{2}\\ =>m>4\)
hàm số xác định
\(2x-m\ge0\\ =>x\ge\dfrac{m}{2}\)
=> Tập xác định : \([\dfrac{m}{2};+\infty)\)
Để hàm số xác định trên đoạn \([2;+\infty)\)
\(2< \dfrac{m}{2}\\ =>m>4\)
Cho hàm số \(y=\dfrac{\sqrt{m+1}}{3x^2-2x+m}\)
Tìm m để hàm số xác định trên toàn bộ trục số.
1, Cho hàm số y=\(\sqrt{x-2m+1}\) .Tìm m để hàm số xác định trên (2 ;+∞)
1. Cho y=\(\dfrac{\sqrt{3x-5m+6}}{x+m-1}\) . Tìm m để hàm số xác định trên (0;m)
Xác định m để hàm số \(y=\sqrt{2-x}+\sqrt{2x+m}\) có tập xác định có độ dài là 1
Bài 8: Cho hàm số \(y=\sqrt{1-\left|2x^2+mx+m+15\right|}\)
Có bao nhiêu giá trị của m để hàm số xác định trong khoảng [1,3]
Bài 8. Cho hàm số \(y=\sqrt{1-\left|2x^2+mx+m+15\right|}\). Có bao nhiêu giá trị của tham số mđể hàm số xác định trên đoạn [1,3] .
Tìm m để hàm số y = \(\frac{x-2m}{(x+m-2)(x+m+1)}\) xác định trên [-1;1)
Bải 1: Tìm tập xác định của các hàm số sau: a) 3x-2 2x+1 c) y=\sqrt{2x+1}-\sqrt{3-x} b) y= ²+2x-3 d) y= √2x+1 X f(x) Chú ý: * Hàm số cho dạng v thi f(x) * 0. ở Hàm số cho dạng y = v/(x) thì f(r) 2 0. X * Hàm số cho dạng " J7(p) thi f(x)>0.
Bài 9: Cho hàm số \(y=\dfrac{2mx+4}{\sqrt{x^2+2mx+2018m+2019}}+\sqrt{mx^2+2mx+2020}\). Gọi S là tập hợp các giá trị nguyên của m để hàm số xác định trên R. Hỏi tập S có bao nhiêu phần tử?