Lời giải:
Để hàm xác định trên $R$ thì $2x^2-3x+m\neq 0, \forall x\in\mathbb{R}$
$\Leftrightarrow m\neq -(2x^2-3x), \forall x\in\mathbb{R}$
Ta thấy:
$-(2x^2-3x)\in (-\infty; \frac{9}{8}]$ nên $m\in (\frac{9}{8}; +\infty)$
Lời giải:
Để hàm xác định trên $R$ thì $2x^2-3x+m\neq 0, \forall x\in\mathbb{R}$
$\Leftrightarrow m\neq -(2x^2-3x), \forall x\in\mathbb{R}$
Ta thấy:
$-(2x^2-3x)\in (-\infty; \frac{9}{8}]$ nên $m\in (\frac{9}{8}; +\infty)$
Có bao nhiêu giá trị nguyên của tham số m trên đoạn
[-2020; 2020] để hàm số f(x) = \(\dfrac{\sqrt{x^2-2x+3}}{x^2-2x+m-1}\) có tập xác định là R?
Cho hàm số y= x2 +2x - 3 (1), đoạn thẳng (2) y= 3x + m . Tìm m để (1) cắt (2) tại 2 điểm phân biệt A, B và OA vuông góc với OB?
Tìm tất cả giá trị của m để hs:
a)y= (m-1)x+1 đồng biến trên R
b)y= -mx+m+1 nghịch biến trên R
c)y= -(\(m^{2}\)+1)x+m+1 nghịch biến trên R
d)y= \(\dfrac{1}{m-1}\)x+2 đồng biến trên R
Tìm m để hàm số có tập xác định R
f (x) = y= 3x^2 + mx -7 - căn 3x^2 -4x / x^2 + mx + m -2
Tìm tất cả các giá trị của tham số m để hàm số \(y=\left(m^2-6m\right)x-\sqrt{2m-3}\)nghịch biến trên khoảng (-3; 5)
C/m hàm số: y = -x3 + x2 - x + 5 nghịch biến trên R
Với giá trị nào của m thì hàm số:
a) y = f(x) = (m-1)x +m2 -3 đồng biến trên R
b) y = f (x) = -x2 + (m-1)x+2 nghịch biến trên (1;2)
Cho hàm số y=(m2-3m)x+2m-5 ( m là tham số) có đồ thị là d
Cho 2 đường thẳng (k3)y=2x-1
(k4) x-3y+2=0
Tìm m để d, k3,k4 đồng quy
Giúp mk vs
Định tham số để tập nghiệm của các phương trình sau là R:
1/ \(m^3x=mx+m^2-m\)
2/ \(m^2\left(mx-1\right)=2m\left(2x+1\right)\)
3/ \(m\left(x-1\right)+n\left(2x+1\right)=x+2\)