Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Phương Linh
Xem chi tiết

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Quynh Truong
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2021 lúc 23:05

a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi 2x-1=0

\(\Leftrightarrow2x=1\)

hay \(x=\dfrac{1}{2}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)

Charlotte Ngân
Xem chi tiết
Nezuko Kamado
Xem chi tiết
Nezuko Kamado
31 tháng 10 2021 lúc 13:35

Ai lm đc câu nào thì giúp mk với , cảm ơn !!

Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 13:39

\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)

Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 13:48

a: \(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{5}\)

Nguyễn Thanh Vân
Xem chi tiết
Nguyễn Đức Trí
26 tháng 8 2023 lúc 16:43

\(C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)

\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\)

mà \(-2\left|\dfrac{1}{3}x+4\right|\le0,\forall x\)

\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\le\dfrac{5}{3}\)

\(\Rightarrow GTLN\left(C\right)=\dfrac{5}{3}\left(tạix=-12\right)\)

Trần Long
Xem chi tiết
HT.Phong (9A5)
16 tháng 9 2023 lúc 5:27

\(D=\dfrac{15}{3\left|2x+1\right|+5}\)

Ta có:

\(\left\{{}\begin{matrix}15>0\\3\left|2x+1\right|\ge5\forall x\end{matrix}\right.\)Nên:

\(\Rightarrow D=\dfrac{15}{3\left|2x-1\right|+5}\le3\left(=\dfrac{15}{5}\right)\forall x\) 

Dấu "=" xảy ra:

\(\dfrac{15}{3\left|2x+1\right|+5}=3\)

\(\Rightarrow3\left|2x+1\right|+5=5\)

\(\Rightarrow3\left|2x+1\right|=0\)

\(\Rightarrow\left|2x+1\right|=0\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=-\dfrac{1}{2}\)

Vậy: \(D_{max}=3\) khi \(x=-\dfrac{1}{2}\)

D = \(\dfrac{15}{3.\left|2x-1\right|+5}\)  vì |2\(x\) - 1| ≥ 0 ∀ \(x\) ⇒3.|2\(x-1\)| + 5 ≥ 5 ∀ \(x\)

⇒D = \(\dfrac{15}{3.\left|2x-1\right|+5}\) ≤ \(\dfrac{15}{5}\) = 3 dấu bằng xảy ra khi 2\(x\) - 1 =0 ⇒ \(x=\dfrac{1}{2}\)

Kết luận Dmin = 3 ⇔ \(x\) = \(\dfrac{1}{2}\)

 

crewmate
Xem chi tiết
Bùi Võ Đức Trọng
2 tháng 8 2021 lúc 10:38

Ta có: |x−2| \(\ge\) 0

=> |x−2| + 3 \(\ge\) 3

Để B lớn nhất => |x−2| + 3 nhỏ nhất =>  |x−2| + 3  = 3 khi x = 2

  

 

Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 23:08

Ta có: \(\left|x-2\right|+3\ge3\forall x\)

\(\Leftrightarrow\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\forall x\)

Dấu '=' xảy ra khi x-2=0

hay x=2

Vũ Ngọc Thảo Nguyên
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Huyền Trang
5 tháng 2 2021 lúc 15:15

undefined

Lê Thu Hiền
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang