d) -x^3+8x^2-12x+8 ; e) 27x^3+81x^2+81x+27
Tìm x biết
1) 8x ^ 3 - 12x ^ 2 + 6x - 1 = 0
2) x ^ 3 - 6x ^ 2 + 12x - 8 = 27
3) x ^ 2 - 8x + 16 = 5 * (4 - x) ^ 3
4) (2 - x) ^ 3 = 6x(x - 2)
5) (x + 1) ^ 3 - (x - 1) ^ 3 - 6 * (x - 1) ^ 2 = - 10
6) (3 - x) ^ 3 - (x + 3) ^ 3 = 36x ^ 2 - 54x
1) \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x\right)^2-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
2) \(x^3-6x^2+12x-8=27\)
\(\Leftrightarrow x^3-3\cdot x^2\cdot2+3\cdot2^2\cdot x-2^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=3+2\)
\(\Leftrightarrow x=5\)
3) \(x^2-8x+16=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(x-4\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(4-x\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow5\left(4-x\right)=1\)
\(\Leftrightarrow4-x=\dfrac{1}{5}\)
\(\Leftrightarrow x=4-\dfrac{1}{5}\)
\(\Leftrightarrow x=\dfrac{19}{5}\)
4) \(\left(2-x\right)^3=6x\left(x-2\right)\)
\(\Leftrightarrow8-12x+6x^2-x^3=6x^2-12x\)
\(\Leftrightarrow-12x+6x^2-6x^2+12x=8-x^3\)
\(\Leftrightarrow8-x^3=0\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x^3=2^3\)
\(\Leftrightarrow x=2\)
5) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x-3x\right)+\left(3x^2+3x^2\right)+\left(1+1\right)-6x^2+12x-6=-10\)
\(\Leftrightarrow0+0+0+\left(6x^2-6x^2\right)+12x-4=-10\)
\(\Leftrightarrow12x-4=-10\)
\(\Leftrightarrow12x=-10+4\)
\(\Leftrightarrow12x=-6\)
\(\Leftrightarrow x=\dfrac{-6}{12}\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
6) \(\left(3-x\right)^3-\left(x+3\right)^3=36x^2-54x\)
\(\Leftrightarrow27-27x+9x^2-x^3-x^3-9x^2-27x-27=36x^2-54x\)
\(\Leftrightarrow-54x-2x^3=36x^2-54x\)
\(\Leftrightarrow-2x^3=36x^2\)
\(\Leftrightarrow-2x^3-36x^2=0\)
\(\Leftrightarrow-2x^2\left(x+18\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x^2=0\\x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-18\end{matrix}\right.\)
A= x^2 + 11x + 3
B= x^2 - 12x + 5
C= 3x^2 + 7 + 4
D= 7x^2 + 8x + 10
M= 16x^2 - 24x + 11
E= -3x^2 + 12x + 8
F= -25x^2 - 50x + 3
Phân tích thành nhân tử
`2x-1^3 +8`
`8x^3 -12x^2 +6x-1`
`8x^3 -12x^2 +6x-2`
`9x^3 -12x^2 +6x-1`
\(2x-1^3+8\)
\(=2x-9\)
\(=\left(\sqrt{2x}\right)^2-3^2\)
\(=\left(\sqrt{2x}-3\right)\left(\sqrt{2x}+3\right)\)
_________
\(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
_______________
\(8x^3-12x^2+6x-2\)
\(=8x^3-12x^2+6x-1-1\)
\(=\left(2x-1\right)^3-1\)
\(=\left(2x-1-1\right)\left(4x^2-4x+1+2x-1+1\right)\)
\(=\left(2x-2\right)\left(4x^2-2x+1\right)\)
\(=2\left(x-1\right)\left(4x^2-2x+1\right)\)
________
\(9x^3-12x^2+6x-1\)
\(=x^3+8x^3-12x^2+6x-1\)
\(=x^3+\left(2x-1\right)^3\)
\(=\left(x+2x-1\right)\left(x^2-2x^2-x+4x^2-4x+1\right)\)
\(=\left(3x-1\right)\left(3x^2-5x+1\right)\)
b: 8x^3-12x^2+6x-1
=(2x)^3-3*(2x)^2*1+3*2x*1^2-1^3
=(2x-1)^3
c: =(8x^3-12x^2+6x-1)-1
=(2x-1)^3-1
=(2x-1-1)[(2x-1)^2+2x-1+1]
=2(x-1)(4x^2-4x+1+2x)
=2(x-1)(4x^2-2x+1)
8x³ - 12x² + 6x - 1
= (2x)³ - 3.(2x)².1 + 3.2x.1 - 1³
= (2x - 1)³
--------------------
8x³ - 12x² + 6x - 2
= 8x³ - 12x² + 6x - 1 - 1
= (2x)³ - 3.(2x)².1 + 3.(2x).1 - 1³ - 1³
= (2x - 1)³ - 1³
= (2x - 1 - 1)[(2x - 1)² + (2x - 1).1 + 1]
= (2x - 2)(4x² - 4x + 1 + 2x - 1 + 1)
= 2(x - 1)(4x² - 2x + 1)
--------------------
9x³ - 12x² + 6x - 1
= x³ + 8x³ - 12x² + 6x - 1
= x³ + (2x)³ - 3.(2x)² + 3.2x.1² - 1³
= x³ + (2x - 1)³
= (x + 2x - 1)[x² - x.(2x - 1) + (2x - 1)²]
= (3x - 1)(x² - 2x² + x + 4x² - 4x + 1)
= (3x - 1)(3x² - 3x + 1)
\(P\left(x\right)=\sqrt[3]{\sqrt{x+8}\left(x^4+8x^3+12x\right)+6x^3+48x^2+8}\)
đặt \(A=\sqrt{x+8}\left(x^4+8x^3+12x\right)+6x^3+48x^2+8\)
\(=\sqrt{x+8}\left(x^4+8x^3\right)+6x^2\left(x+8\right)+12x\sqrt{x+8}+8\)
\(=\sqrt{\left(x+8\right)^3}x^3+3\sqrt{\left(x+8\right)^2}x^22+3\sqrt{\left(x+8\right)}x4+8\)
\(=\left(x\sqrt{x+8}+2\right)^3\)
\(\Rightarrow P\left(x\right)=x\sqrt{x+8}+2\)
\(P\left(x\right)=\sqrt[3]{\sqrt{x+8}.\left[x^3\left(x+8\right)+12x\right]+6x^2\left(x+8\right)+8}\)
Đặt: \(\sqrt{x+8}=a>0\) => \(x+8=a^2\)
Khi đó ta có:
\(P\left(x\right)=\sqrt[3]{a\left(x^3a^2+12x\right)+6x^2a^2+8}\)
\(=\sqrt[3]{x^3a^3+12xa+6x^2a^2+2}\)
\(=\sqrt[3]{\left(ax+2\right)^3}\)
\(=ax+2\)
\(=x\sqrt{x+8}+2\)
Tìm max A = \(\dfrac{x^3+8}{x^3-8}.\dfrac{4x^2+8x+16}{x^2-4}-\dfrac{4x}{x-2}:\left(\dfrac{-16}{x^4-6x^3+12x^2-8x}\right)\)
5.phân thức 4x/3 bằng với phân thức nào sau đây? A. -8x/6 b. 8x/6 c. 7x/6 D. 6/8x 6. Tìm điều kiện xác định của các phân thức sau A) x^2-1/x-2 b) 2x^2+3/x+1 7. Rút gọn các phân thức sau: A) 8x^3yz/24xy^2 b) 12x^4y^2z/x+1 8.thực hiện các phép tính sau: A) x^2+4/3x^2-6x + 5x+2/3x -4x/3x^2-6x
Câu 5: B
Câu 6:
a: ĐKXĐ: \(x-2\ne0\)
=>\(x\ne2\)
b: ĐKXĐ: \(x+1\ne0\)
=>\(x\ne-1\)
8:
\(A=\dfrac{x^2+4}{3x^2-6x}+\dfrac{5x+2}{3x}-\dfrac{4x}{3x^2-6x}\)
\(=\dfrac{x^2+4-4x}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)
\(=\dfrac{\left(x-2\right)^2}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)
\(=\dfrac{x-2+5x+2}{3x}=\dfrac{6x}{3x}=2\)
7:
\(\dfrac{8x^3yz}{24xy^2}\)
\(=\dfrac{8xy\cdot x^2z}{8xy\cdot3y}\)
\(=\dfrac{x^2z}{3y}\)
viết các bt sau thành lập phương của một tổng hay một hiệu
a, 8-12x+6x^2-x^3
b,48x+64+x^3+12x^2
c,-9x^2+y-1/7+27y^3
d,8x^3+150x-125-60x^2
a) \(8-12x+6x^2-x^3\)
\(=-x^3+8+6x^2-12x\)
\(=-\left(x^3-2^3\right)+6x\left(x-2\right)\)
\(=-\left(x-2\right)\left(x^2+2x+4\right)+6x\left(x-2\right)\)
\(=\left(x-2\right)\left(-x^2-2x-4+6x\right)\)
\(=\left(x-2\right)\left(-x^2+4x-4\right)\)
\(=-\left(x-2\right)\left(x-2\right)^2\)
\(=-\left(x-2\right)^3\)
b) \(48x+64+x^3+12x^2\)
\(=x^3+3.4.x^2+3.x.4^2+4^3\)
\(=\left(x+4\right)^3\)
c) \(-9y^2+y-\dfrac{1}{27}+27y^3\)
\(=27y^3-9y^2+y-\dfrac{1}{27}\)
\(=\left(3y\right)^3-3.\left(3y\right)^2.\dfrac{1}{3}+3.3y.\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3\)
\(=\left(3y-\dfrac{1}{3}\right)^3\)
d) \(8x^3+150x-125-60x^2\)
\(=8x^3-60x^2+150x-125\)
\(=\left(2x\right)^3-3.\left(2x\right)^2.5+3.2x.5^2-5^3\)
\(=\left(2x-5\right)^3\)
a, \(8-12x+6x^2-x^3=-\left(x^3-6x^2+12x-8\right)\)
\(=-\left(x^3-2x^2-4x^2+8x+4x-8\right)\)
\(=-\left(x-2\right)^3\)
b, \(48x+64+x^3+12x^2=x^3+4x^2+8x^2+32x+16x+24\)
\(=\left(x+4\right)^3\)
c, \(-9y^2+y-\dfrac{1}{7}+27y^3\)
(sai đề)
d, \(8x^3+150x-125-60x^2=8x^3-20x^2-40x^2+100x+50x-125\)
\(=4x^2\left(2x-5\right)-20x\left(2x-5\right)+25\left(2x-5\right)\)
\(=\left(2x-5\right)\left(4x^2-20x+25\right)=\left(2x-5\right)\left(2x-5\right)^2\)
\(=\left(2x-5\right)^3\)
Chúc bạn học tốt!!!
Tìm x biết:
\(a)x^3-6x^2+12x-8=0\\ b)8x^3-12x^2+6x-1=0\\ c)x^3+9x^2+27x+27=0\)
\(\dfrac{1}{27}+a^3\\ 8x^3+27y^3\\ \dfrac{1}{8}x^3+8y^3\\ x^6+1\\ x^9+1\\ x^3-64\\ x^3-125\\ 8x^6-27y^3\\ \dfrac{1}{64}x^6-125y^3\\ \dfrac{1}{8}x^3-8\\ x^3+6x^2+12x+8\\ x^3+9x^2+27x+27\) Giúp mình với mình cần gấp ;-;
1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)
2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)
4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)
7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)
8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)
10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)
11) \(=\left(x+2\right)^3\)
12) \(=\left(x+3\right)^3\)