Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 5 2022 lúc 22:00

Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)

\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)

CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)

Cộng vế theo vế:

\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

Quang Huy Điền
Xem chi tiết
Phùng Khánh Linh
14 tháng 8 2018 lúc 21:06

Áp dụng BĐT Cauchy dạng Engel , ta có :
\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)\(\dfrac{\left(1+1+1\right)^2}{a+b+c+1+1+1}=\dfrac{9}{a+b+c+3}\text{ ≥}\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

\("="\text{⇔}a=b=c=1\)

Serena chuchoe
Xem chi tiết
Lightning Farron
2 tháng 8 2017 lúc 12:01

Nice proof, nhưng đã quy đồng là phải thế này :v

\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)

\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)

Lightning Farron
2 tháng 8 2017 lúc 13:41

Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:

\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)

Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)

Áp dụng BĐT này ta có:

\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)

Vô danh
Xem chi tiết
Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:31

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:08

-Tham khảo:

undefined

Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:12

-Tham khảo:

undefined

TXTpro
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
7 tháng 10 2018 lúc 9:57

Ta có BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=4\)

Sử dụng BĐT Cauchy schwarz dưới dạng engel ta có :

\(\dfrac{\left(a+\dfrac{1}{b}\right)^2}{1}+\dfrac{\left(b+\dfrac{1}{a}\right)^2}{1}\ge\dfrac{\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2}{2}=\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=\dfrac{1}{2}\)

Kathy Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2022 lúc 21:04

 

a: \(-3x^2\ge0\)

\(\Leftrightarrow x^2< =0\)

=>x=0

b: \(\dfrac{-5}{4x^2}\ge0\)

\(\Leftrightarrow4x^2< 0\)(vô lý)

c: \(\dfrac{4}{x+3}>=0\)

=>x+3>0

hay x>-3

d: \(\dfrac{-5}{2x-1}>=0\)

=>2x-1<0

hay x<1/2

e: \(\dfrac{-2}{x^2+1}>=0\)

=>x2+1<0(vô lý)

f: \(\dfrac{10}{x^2+9}>=0\)

=>x2+9>0(luôn đúng)

 

Kathy Nguyễn
Xem chi tiết
Nguyễn Mạnh Nam
22 tháng 3 2020 lúc 16:25

sai đề hết??ucche

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
15 tháng 6 2022 lúc 21:03

a: \(-3x^2\ge0\)

\(\Leftrightarrow x^2< =0\)

=>x=0

b: \(\dfrac{-5}{4x^2}\ge0\)

\(\Leftrightarrow4x^2< 0\)(vô lý)

c: \(\dfrac{4}{x+3}>=0\)

=>x+3>0

hay x>-3

d: \(\dfrac{-5}{2x-1}>=0\)

=>2x-1<0

hay x<1/2

e: \(\dfrac{-2}{x^2+1}>=0\)

=>x2+1<0(vô lý)

f: \(\dfrac{10}{x^2+9}>=0\)

=>x2+9>0(luôn đúng)

Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 1 2021 lúc 20:19

\(a^2+1\ge2a\) ; \(\dfrac{b^2}{a^2}+1\ge\dfrac{2b}{a}\) ; \(\dfrac{1}{b^2}+1\ge\dfrac{2}{b}\)

\(\Rightarrow a^2+\dfrac{b^2}{a^2}+\dfrac{1}{b^2}+3\ge a+\dfrac{b}{a}+\dfrac{1}{b}+a+\dfrac{b}{a}+\dfrac{1}{b}\ge a+\dfrac{b}{a}+\dfrac{1}{b}+3\sqrt[3]{\dfrac{ab}{ab}}\)

\(\Rightarrow a^2+\dfrac{b^2}{a^2}+\dfrac{1}{b^2}+3\ge a+\dfrac{b}{a}+\dfrac{1}{b}+3\)

\(\Rightarrow\) đpcm

Dấu "=" xảy ra khi \(a=b=1\)

Mun Amie
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 6 2021 lúc 18:11

\(c\left(1+ab\right)\le c\left(1+\dfrac{a^2+b^2}{2}\right)=c\left(1+\dfrac{1-c^2}{2}\right)=1-\dfrac{1}{2}\left(c-1\right)^2\left(c+2\right)\le1\)

\(\Rightarrow c^2\left(1+ab\right)\le c\Rightarrow\dfrac{c}{1+ab}\ge c^2\)

Hoàn toàn tương tự ta có: \(\dfrac{a}{1+bc}\ge a^2\) ; \(\dfrac{b}{1+ac}\ge b^2\)

Cộng vế: \(VT\ge a^2+b^2+c^2=1\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

Akai Haruma
9 tháng 6 2021 lúc 16:43

Cách 2:

Áp dụng BĐT Bunhiacopxky:

\(\text{VT}[a(1+bc)+b(1+ac)+c(1+ab)]\geq (a+b+c)^2\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+3abc}\)

 Ta sẽ CM: 

\(\frac{(a+b+c)^2}{a+b+c+3abc}\geq 1\)

\(\Leftrightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc\)

Vì $a^2+b^2+c^2=1\Rightarrow a,b,c\leq 1$

$\Rightarrow (a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow 1+ ab+bc+ac\geq a+b+c+abc(1)$

Áp dụng BĐT AM-GM:

$ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}\geq 3\sqrt[3]{a^2b^2c^2.abc}=3abc\geq 2abc(2)$

Từ $(1);(2)\Rightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc$

Ta có đpcm

Dấu "=" xảy ra khi $(a,b,c)=(1,0,0)$ và hoán vị.