cho \(a\ge0,b\ge0\)
c/m \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)
1. Cho a,b,c t/m: \(\left\{{}\begin{matrix}a\ge\dfrac{4}{3}\\b\ge\dfrac{4}{3}\\c\ge\dfrac{4}{3}\end{matrix}\right.\) và \(a+b+c=6\)
\(CMR:\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\ge\dfrac{6}{5}\)
2. Cho x,y >0 t/m: \(2x+3y-13\ge0\)
Tìm min \(P=x^2+3x+\dfrac{4}{x}+y^2+\dfrac{9}{y}\)
Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)
\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)
Cộng vế theo vế:
\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
Cho \(a,b,c\ge0\) và \(a+b+c\le3\)
CMR : \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge\dfrac{3}{2}\)
Áp dụng BĐT Cauchy dạng Engel , ta có :
\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\) ≥ \(\dfrac{\left(1+1+1\right)^2}{a+b+c+1+1+1}=\dfrac{9}{a+b+c+3}\text{ ≥}\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
\("="\text{⇔}a=b=c=1\)
Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR
2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)
Giải:
Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy sau:
\(\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\ge0\),
\(\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\),
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge0\)
Các bđt trên đầu mang tính đối xứng giữa các biến nên k mất tính tổng quát ta có thể giả sử \(a\ge b\ge c\)
=> \(\dfrac{a^2-1}{a}\ge\dfrac{b^2-1}{b}\ge\dfrac{c^2-1}{c}\)
và \(\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{c^2}}}\)
Áp dụng bđt Chebyshev có:
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge\dfrac{1}{3}\left(\sum\dfrac{a^2-1}{a}\right)\left(\sum\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\right)\)
Theo gia thiết lại có: \(\sum\dfrac{a^2-1}{a}=\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
nên ta có thể suy ra \(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge0\)
Vì vậy bđt đã cho ban đầu cũng đúng.
Nice proof, nhưng đã quy đồng là phải thế này :v
\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)
Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:
\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)
Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)
Áp dụng BĐT này ta có:
\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)
B1: Cho \(0\le a,b,c\le2\) thỏa mãn \(a+b+c=3\). CMR: \(a^2+b^2+c^2\le5\)
B2: Cho \(a,b\ge0\) thỏa mãn \(a^2+b^2=a+b\). TÌm GTLN \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
B3: CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
Cho \(a+b=1;a\ge0;b\ge0\)
CMR:\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{25}{2}\)
Ta có BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=4\)
Sử dụng BĐT Cauchy schwarz dưới dạng engel ta có :
\(\dfrac{\left(a+\dfrac{1}{b}\right)^2}{1}+\dfrac{\left(b+\dfrac{1}{a}\right)^2}{1}\ge\dfrac{\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2}{2}=\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)
Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=\dfrac{1}{2}\)
Tìm x
a). \(-3x^2\) \(\ge\) 0
b). \(\dfrac{-5}{4x^2}\ge0\)
c). \(\dfrac{4}{x+3}\ge0\)
d). \(\dfrac{-5}{2x-1}\ge0\)
e). \(\dfrac{-2}{x^2+1}\ge0\)
f). \(\dfrac{10}{x^2+9}\ge0\)
a: \(-3x^2\ge0\)
\(\Leftrightarrow x^2< =0\)
=>x=0
b: \(\dfrac{-5}{4x^2}\ge0\)
\(\Leftrightarrow4x^2< 0\)(vô lý)
c: \(\dfrac{4}{x+3}>=0\)
=>x+3>0
hay x>-3
d: \(\dfrac{-5}{2x-1}>=0\)
=>2x-1<0
hay x<1/2
e: \(\dfrac{-2}{x^2+1}>=0\)
=>x2+1<0(vô lý)
f: \(\dfrac{10}{x^2+9}>=0\)
=>x2+9>0(luôn đúng)
Tìm x
a). \(-3x^2\) \(\ge\) 0
b). \(\dfrac{-5}{4x^2}\ge0\)
c). \(\dfrac{4}{x+3}\ge0\)
d). \(\dfrac{-5}{2x-1}\ge0\)
e). \(\dfrac{-2}{x^2+1}\ge0\)
f). \(\dfrac{10}{x^2+9}\ge0\)
a: \(-3x^2\ge0\)
\(\Leftrightarrow x^2< =0\)
=>x=0
b: \(\dfrac{-5}{4x^2}\ge0\)
\(\Leftrightarrow4x^2< 0\)(vô lý)
c: \(\dfrac{4}{x+3}>=0\)
=>x+3>0
hay x>-3
d: \(\dfrac{-5}{2x-1}>=0\)
=>2x-1<0
hay x<1/2
e: \(\dfrac{-2}{x^2+1}>=0\)
=>x2+1<0(vô lý)
f: \(\dfrac{10}{x^2+9}>=0\)
=>x2+9>0(luôn đúng)
Chứng minh:
\(a^2+\dfrac{b^2}{a^2}+\dfrac{1}{b^2}\ge a+\dfrac{b}{a}+\dfrac{1}{b}a,b\ge0\)
\(a^2+1\ge2a\) ; \(\dfrac{b^2}{a^2}+1\ge\dfrac{2b}{a}\) ; \(\dfrac{1}{b^2}+1\ge\dfrac{2}{b}\)
\(\Rightarrow a^2+\dfrac{b^2}{a^2}+\dfrac{1}{b^2}+3\ge a+\dfrac{b}{a}+\dfrac{1}{b}+a+\dfrac{b}{a}+\dfrac{1}{b}\ge a+\dfrac{b}{a}+\dfrac{1}{b}+3\sqrt[3]{\dfrac{ab}{ab}}\)
\(\Rightarrow a^2+\dfrac{b^2}{a^2}+\dfrac{1}{b^2}+3\ge a+\dfrac{b}{a}+\dfrac{1}{b}+3\)
\(\Rightarrow\) đpcm
Dấu "=" xảy ra khi \(a=b=1\)
Cho \(a;b;c\ge0:a^2+b^2+c^2=1\)
CMR: \(\dfrac{c}{1+ab}+\dfrac{b}{1+ac}+\dfrac{a}{1+bc}\ge1\)
\(c\left(1+ab\right)\le c\left(1+\dfrac{a^2+b^2}{2}\right)=c\left(1+\dfrac{1-c^2}{2}\right)=1-\dfrac{1}{2}\left(c-1\right)^2\left(c+2\right)\le1\)
\(\Rightarrow c^2\left(1+ab\right)\le c\Rightarrow\dfrac{c}{1+ab}\ge c^2\)
Hoàn toàn tương tự ta có: \(\dfrac{a}{1+bc}\ge a^2\) ; \(\dfrac{b}{1+ac}\ge b^2\)
Cộng vế: \(VT\ge a^2+b^2+c^2=1\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Cách 2:
Áp dụng BĐT Bunhiacopxky:
\(\text{VT}[a(1+bc)+b(1+ac)+c(1+ab)]\geq (a+b+c)^2\)
\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{a+b+c+3abc}\)
Ta sẽ CM:
\(\frac{(a+b+c)^2}{a+b+c+3abc}\geq 1\)
\(\Leftrightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc\)
Vì $a^2+b^2+c^2=1\Rightarrow a,b,c\leq 1$
$\Rightarrow (a-1)(b-1)(c-1)\leq 0$
$\Leftrightarrow 1+ ab+bc+ac\geq a+b+c+abc(1)$
Áp dụng BĐT AM-GM:
$ab+bc+ac\geq 3\sqrt[3]{a^2b^2c^2}\geq 3\sqrt[3]{a^2b^2c^2.abc}=3abc\geq 2abc(2)$
Từ $(1);(2)\Rightarrow 1+2(ab+bc+ac)\geq a+b+c+3abc$
Ta có đpcm
Dấu "=" xảy ra khi $(a,b,c)=(1,0,0)$ và hoán vị.