tìm x,y,z biết: \(\dfrac{x}{z+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y+2}=x+y+z\)
Tìm x;y;z biết
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)
Tìm x,y,z biết:\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z=\dfrac{x+y+z}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\Rightarrow y+z+1=2x\Rightarrow y+z=2x-1\left(1\right)\)
\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\Rightarrow x+z+1=2y\Rightarrow x+z=2y-1\left(2\right)\)
\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\Rightarrow x+y-2=2z\)
\(x+y+z=\dfrac{1}{2}\left(3\right)\)
Thay (1) vào (3) ta có:
\(x+y+z=\dfrac{1}{2}\\ \Rightarrow x+2x-1=\dfrac{1}{2}\\ \Rightarrow3x=\dfrac{3}{2}\\ \Rightarrow x=\dfrac{1}{2}\)
Thay (2) vào (3) ta có:
\(x+y+z=\dfrac{1}{2}\\ \Rightarrow y+2y-1=\dfrac{1}{2}\\ \Rightarrow3y=\dfrac{3}{2}\\ \Rightarrow y=\dfrac{1}{2}\)
Ta có:
\(x+y+z=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{2}+\dfrac{1}{2}+z=\dfrac{1}{2}\\ \Rightarrow z=-\dfrac{1}{2}\)
TH1: \(x+y+z=0\Rightarrow x=y=z=0\)
TH2: \(x+y+z\ne0\)
\(x+y+z=\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x+2y+2z=1\\2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x+2y+2z=1\\2x+2y+2z=3y+3z+1\\2x+2y+2z=3x+3z+1\\2x+2y+2z=3x+3y-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+2z=1\\y+z=0\\x+z=0\\x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2.1+2z=1\\y=-z\\x=-z\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}z=-\dfrac{1}{2}\\x=\dfrac{1}{2}\\y=\dfrac{1}{2}\\\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(0;0;0\right);\left(\dfrac{1}{2};\dfrac{1}{2};-\dfrac{1}{2}\right)\)
Tìm x,y,z biết:
\(\dfrac{x}{z+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\left(x,y,z\ne0\right)\)
\(\Rightarrow\dfrac{z+y+1}{x}=\dfrac{x+z+1}{y}=\dfrac{x+y-2}{z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2=x+y+z\\ \Rightarrow\left\{{}\begin{matrix}z+y+1=2x\\x+z+1=2y\\x+y-2=2z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z=2x-1\\x+z=2y-1\\x+y=2z+2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2x-1=2-x\\2y-1=2-y\\2z+2=2-z\end{matrix}\right.\Rightarrow\left(x,y,z\right)=\left(1;1;0\right)\)
Tìm các số x; y; z biết rằng: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{y+x-3}{z}=\dfrac{1}{x+y+z}\)
Tìm x, y, z biết:\(\dfrac{y+z-2}{x+1}=\dfrac{z+x+1}{y-1}=\dfrac{x+y-3}{z-2}=\dfrac{1}{x+y+z-2}\)(vói giả thiết các tỉ số đều có nghĩa)
Tìm x,y,z:
\(\dfrac{y+z+1}{x}\)=\(\dfrac{x+z+2}{y}\)=\(\dfrac{x+y-3}{z}\)=\(\dfrac{1}{x+y+z}\)
Lời giải:
Áp dụng TCDTSBN:
$\frac{1}{x+y+z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2$
\(\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ y+z+1=2x\\ x+z+2=2y\\ x+y-3=2z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ x+y+z+1=3x\\ x+y+z+2=3y\\ x+y+z-3=3z\end{matrix}\right.\)
\(\left\{\begin{matrix} \frac{1}{2}+1=3x\\ \frac{1}{2}+2=3y\\ \frac{1}{2}-3=3z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\frac{1}{2}\\ y=\frac{5}{6}\\ z=\frac{-5}{6}\end{matrix}\right.\)
Tìm x, y, z
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\)
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}\\ =\dfrac{x+y+2+y+z+1+z+x-3}{z+x+y}=\dfrac{2\left(x+y+z\right)+\left(1+2-3\right)}{z+x+y}=2\\ Vì\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\\ =>2=\dfrac{1}{x+y+z}=>2\left(x+y+z\right)=1=>x+y+z=\dfrac{1}{2}\\ =>\dfrac{x+y+2}{z}=2=>x+y+2=2z\\ \dfrac{y+z+1}{x}=2=>y+z+1=2x\\ \dfrac{z+x-3}{y}=2=>z+x-3=2y\\ \dfrac{1}{x+y+z}=2=>x+y+z=\dfrac{1}{2}\)
+) x+y+z = \(\dfrac{1}{2}=>y+z=\dfrac{1}{2}-x=>\dfrac{1}{2}-x+1=2x=>3x=\dfrac{3}{2}=>x=\dfrac{1}{2}\)
+)\(x+y+z=\dfrac{1}{2}=>x+y=\dfrac{1}{2}-z=>\dfrac{1}{2}-z+2=2z=>3z=\dfrac{5}{2}=>z=\dfrac{5}{6}\)
\(=>x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+y=\dfrac{1}{2}=>\dfrac{4}{3}+y=\dfrac{1}{2}=>y=\dfrac{-5}{6}\)
Vậy \(x=\dfrac{1}{2}\\ y=\dfrac{-5}{6}\\ z=\dfrac{5}{6}\)
Ê mấy bọn 7B Nguyễn Lương Bằng ơi bài 2 Toán chiều làm thế này đúng chưa! Góp ý nha!
Tìm x, y, z biết rằng:
a) \(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=x+y+z\)
b)\(\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}+=\dfrac{1}{x+y+z}\)
a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)
Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)
Thay vào đề bài ta được:
\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z
b) Theo đề bài ta có sẵn x+y+z khác 0
Áp dụng dãy tỉ số rồi làm tương tự câu a
Cho 3 số thực x,y,z thỏa mãn \(\dfrac{1}{x^{2}} + \dfrac{1}{y^{2}} + \dfrac{1}{z^{2}}\)= 3
Tìm GTNN của biểu thức P = \(\dfrac{y^{2}z^{2}}{x(y^{2}+z^{2})} + \dfrac{z^{2}x^{2}}{y(z^{2}+x^{2})} + \dfrac{x^{2}y^{2}}{z(x^2+y^2)}\)
Lời giải:
Bạn cần bổ sung điều kiện $x,y,z>0$
\(P=\frac{1}{x.\frac{y^2+z^2}{y^2z^2}}+\frac{1}{y.\frac{z^2+x^2}{z^2x^2}}+\frac{1}{z.\frac{x^2+y^2}{x^2y^2}}=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{z^2}+\frac{1}{x^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)
\(=\frac{1}{x(3-\frac{1}{x^2})}+\frac{1}{y(3-\frac{1}{y^2})}+\frac{1}{z(3-\frac{1}{z^2})}=\frac{x}{3x^2-1}+\frac{y}{3y^2-1}+\frac{z}{3z^2-1}\)
Vì $\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\Rightarrow x^2, y^2, z^2>\frac{1}{3}$
Xét hiệu:
\(\frac{x}{3x^2-1}-\frac{1}{2x^2}=\frac{(x-1)^2(2x+1)}{2x^2(3x^2-1)}\geq 0\) với mọi $x>0$ và $x^2>\frac{1}{3}$
$\Rightarrow \frac{x}{3x^2-1}\geq \frac{1}{2x^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế ta có:
$P\geq \frac{1}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3}{2}$
Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$
Tìm tất cả các số x,y,z biết: \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{z}{x+y-3}=x+y+z\)
Giair chi tiết hộ e vs ạ.
gợi ý nè:
thử cộng chúng lại xem
\(\dfrac{x}{y+z+1}\) = \(\dfrac{y}{x+z+2}\) = \(\dfrac{z}{x+y-3}\) = \(x+y+z\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}\)=\(\dfrac{y}{x+z+2}\)=\(\dfrac{z}{x+y-3}\)=\(\dfrac{x+y+z}{y+z+1+x+z+2+x+y-3}\)
\(x+y+z\) = \(\dfrac{x+y+z}{2.\left(x+y+z\right)}\) = \(\dfrac{1}{2}\) (1)
\(\dfrac{x}{y+z+1}\) = \(\dfrac{1}{2}\) ⇒ 2\(x\) = y+z+1
⇒ 2\(x\) + \(x\) = \(x+y+z+1\) (2)
Thay (1) vào (2) ta có: 2\(x\) + \(x\) = \(\dfrac{1}{2}\) + 1
3\(x\) = \(\dfrac{3}{2}\) ⇒ \(x=\dfrac{1}{2}\)
\(\dfrac{y}{x+z+2}\) = \(\dfrac{1}{2}\) ⇒ 2y = \(x+z+2\) ⇒ 2y+y = \(x+y+z+2\) (3)
Thay (1) vào (3) ta có: 2y + y = \(\dfrac{1}{2}\) + 2
3y = \(\dfrac{5}{2}\) ⇒ y = \(\dfrac{5}{6}\)
Thay \(x=\dfrac{1}{2};y=\dfrac{5}{6}\) vào (1) ta có: \(\dfrac{1}{2}+\dfrac{5}{6}+z\) = \(\dfrac{1}{2}\)
\(\dfrac{5}{6}\) + z = 0 ⇒ z = - \(\dfrac{5}{6}\)
Kết luận: (\(x;y;z\)) = (\(\dfrac{1}{2}\); \(\dfrac{5}{6}\); - \(\dfrac{5}{6}\))