Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{y+x-3}{z}=\frac{y+z+1+x+z+2+y+x-3}{x+y+z}=\frac{2x+2y+2z}{x+y+z}=2\)
=>\(\begin{cases}y+z+1=2x\\ x+z+2=2y\\ x+y-3=2z\end{cases}\Rightarrow\begin{cases}y+z=2x-1\\ x+z=2y-2\\ x+y=2z+3\end{cases}\)
Ta có: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{y+x-3}{z}=\frac{1}{x+y+z}\)
=>\(\frac{1}{x+y+z}=2\)
=>\(x+y+z=\frac12\)
Ta có: \(x+y+z=\frac12\)
=>\(2x-1+x=\frac12\)
=>\(3x=\frac32\)
=>\(x=\frac12\)
Ta có: \(x+y+z=\frac12\)
=>\(2y-2+y=\frac12\)
=>\(3y=2+\frac12=\frac52\)
=>\(y=\frac56\)
Ta có: \(x+y+z=\frac12\)
=>\(2z+3+z=\frac12\)
=>\(3z=\frac12-3=-\frac52\)
=>\(z=-\frac56\)