Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Đặng Phương Thúy

cho 3 số x,y,z đôi 1 khác nhau và chứng minh rằng :

\(\dfrac{y-z}{\left(x-y\right)\cdot\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\cdot\left(y-x\right)}+\dfrac{y-x}{\left(z-x\right)\cdot\left(z-y\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)

Phía sau một cô gái
2 tháng 1 2023 lúc 15:08

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)


Các câu hỏi tương tự
MEOW*o( ̄┰ ̄*)ゞ
Xem chi tiết
Mai Phương Nguyễn
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
Nguyễn Minh Dương
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết
Bà ngoại nghèo khó
Xem chi tiết
Vinh 2k8
Xem chi tiết