Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Khánh Huyền
Xem chi tiết
Nguyễn Thị Thùy Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 22:41

a: Ta có: \(\sqrt{x^2-x+3}+7=10\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b: Ta có: \(\sqrt{x^2-4x+8}-7=-5\)

\(\Leftrightarrow x^2-4x+8=4\)

\(\Leftrightarrow x-2=0\)

hay x=2

Nguyễn Thị Kim Ngọc
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 9 2020 lúc 21:23

ĐKXĐ: ...

\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)

Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)

\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)

Pt trở thành:

\(3t=t^2-10\)

\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)

Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

Lê Minh Anh
Xem chi tiết
Hồng Phúc
3 tháng 1 2021 lúc 22:07

ĐK: \(-\dfrac{1}{4}\le x\le3\)

\(pt\Leftrightarrow4x+1-6\sqrt{4x+1}+9+3-x-2\sqrt{3-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

Phạm Dương Ngọc Nhi
Xem chi tiết
Vũ Nguyễn Diệu Linh
Xem chi tiết
Kirito-Kun
6 tháng 9 2021 lúc 16:18

b. 2 + \(\sqrt{2x-1}=x\)       ĐKXĐ: \(x\ge0,5\)

<=> \(\sqrt{2x-1}\) = x - 2

<=> 2x - 1 = (x - 2)2

<=> 2x - 1 = x2 - 4x + 4

<=> -x2 + 2x + 4x - 4 - 1 = 0

<=> -x2 + 6x - 5 = 0

<=> -x2 + 5x + x - 5 = 0

<=> -(-x2 + 5x + x - 5) = 0

<=> x2 - 5x - x + 5 = 0

<=> x(x - 5) - (x - 5) = 0

<=> (x - 1)(x - 5) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Nguyen
Xem chi tiết
Sách Giáo Khoa
2 tháng 2 2020 lúc 10:10

Điều kiện: \(x\ge\sqrt[3]{2}\)

Ta có:

\(\sqrt[3]{x^2-1}+x=\sqrt{x^3-2}\)

\(\Leftrightarrow\left(\sqrt[3]{x^2-1}-2\right)+\left(x-3\right)=\sqrt{x^3-2}-5\)

\(\Leftrightarrow\frac{x^2-9}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+\left(x-3\right)=\frac{x^3-27}{\sqrt{x^3-2}+5}\)

\(\Leftrightarrow x=3\) (thỏa mãn điều kiện)

Hoặc:

\(\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1-\frac{x^2+3x+9}{\sqrt{x^3-2}+5}=0\) (vô nghiệm với mọi \(x\ge\sqrt[3]{2}\)

Vậy \(S=\left\{3\right\}\)

Khách vãng lai đã xóa
Nguyễn Quốc Huy
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết