giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
Giải các hệ phương trình sau:
a) \( \left\{{}\begin{matrix}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\end{matrix}\right.;\)
b) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=\sqrt{2}\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right..\)
Giải các hệ phương trình sau:a) \(\left\{{}\begin{matrix}\left(2x-y\right)^2-6x+3y=0\\x+2y=0\end{matrix}\right.\);b) \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x-y}{x+y}}+\sqrt{\dfrac{x+y}{2x-y}}=2\\3x+y=14\end{matrix}\right.\)
giải hpt:
1, \(\left\{{}\begin{matrix}x^2y^2+4=2y^2\\\left(xy+2\right)\left(y-x\right)=x^3y^3\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2-4xy\left(\dfrac{2}{x-y}-1\right)=4\left(4+xy\right)\\\sqrt{x-y}+3\sqrt{2y^2-y+1}=2y^2-x+3\end{matrix}\right.\)
Giải các hệ phương trình sau :
a) \(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x-\left(2-\sqrt{3}\right)y=2\\\left(2+\sqrt{3}\right)x+\left(\sqrt{2}-1\right)y=2\end{matrix}\right.\).
Giải hệ phương trình
a. \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{3x+5}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5y+9}{y+4}=9\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\left(x-y\right)^2-3x-3y=4\\2x+y=3\end{matrix}\right.\)
Giai he phuong trinh:
a) \(\left\{{}\begin{matrix}5x+3y=31\\\sqrt{\dfrac{x+2}{y-3}}+\sqrt{\dfrac{y-3}{x+2}}=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{x}{y+12}=1\\\dfrac{x}{y-12}-\dfrac{x}{y}=2\end{matrix}\right.\)
Giải hpt:
\(\left\{{}\begin{matrix}x^2+y^2-4xy\left(\dfrac{2}{x-y}-1\right)=4\left(4+xy\right)\\\sqrt{x-y}+3\sqrt{y^2-y+4}=2y^2-x+3\end{matrix}\right.\)
giải hệ sau bằng phương pháp thế
a)\(\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}-2x+3y=-1\\x+2y=3\end{matrix}\right.\)
giải hệ sau:
a)\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{4}{y}=2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\dfrac{5}{x-1}+\dfrac{3}{3y-2}=1\\\dfrac{2}{2x-1}+\dfrac{1}{3y-2}=1\end{matrix}\right.\)