Điều kiện: \(x\ge\sqrt[3]{2}\)
Ta có:
\(\sqrt[3]{x^2-1}+x=\sqrt{x^3-2}\)
\(\Leftrightarrow\left(\sqrt[3]{x^2-1}-2\right)+\left(x-3\right)=\sqrt{x^3-2}-5\)
\(\Leftrightarrow\frac{x^2-9}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+\left(x-3\right)=\frac{x^3-27}{\sqrt{x^3-2}+5}\)
\(\Leftrightarrow x=3\) (thỏa mãn điều kiện)
Hoặc:
\(\frac{x+3}{\sqrt[3]{\left(x^2-1\right)^2}+2\sqrt[3]{x^2-1}+4}+1-\frac{x^2+3x+9}{\sqrt{x^3-2}+5}=0\) (vô nghiệm với mọi \(x\ge\sqrt[3]{2}\)
Vậy \(S=\left\{3\right\}\)