Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Tấn Đạt
Xem chi tiết
Trần Minh Hoàng
14 tháng 1 2018 lúc 21:01

\(\overline{abc}=c\left(a+b\right)^2\)

\(\Rightarrow100a+10b+c=c\left(a+b\right)^2\)

\(\Rightarrow100a+10b=c\left[\left(a+b\right)^2-1\right]\)

Vì 100a + 10b có tận cùng là 0 nên c hoặc (a + b)2 - 1 có tận cùng là 0. Nhưng c không thể tận cùng là 0 nên (a + b)2 - 1 có tận cùng là 0. \(\Rightarrow\) (a + b)2 có tận cùng là 1. Mà 1 < (a + b)2 < 19 nên (a + b)2 = 9 hoặc 11.

TH1: Nếu (a + b)2 = 9 thì ta có:

\(100a+10b=80c\)

\(\Rightarrow\overline{ab}=8c\)

Vì a + b = 9 và \(\overline{ab}\) \(⋮\) 8 nên a = 7; b = 2; c = 9. Vậy \(\overline{abc}\) = 729

TH2: Nếu (a + b)2 = 11 thì ta có:

\(100a+10b=120c\)

\(\Rightarrow\overline{ab}=12c\)

Vì a + b = 11 và \(\overline{ab}\) \(⋮\) 12 nên a; b; c không có giá trị.

Vậy số cần tìm là 729

Xem chi tiết
nguyễn yến nhi
Xem chi tiết
Trần Minh Hoàng
27 tháng 7 2018 lúc 11:01

a) \(1:\overline{0,abc}=a+b+c\)

\(\Rightarrow\dfrac{1}{\overline{abc}}=\dfrac{a+b+c}{1000}\)

\(\Rightarrow\overline{abc}\left(a+b+c\right)=1000\)

Mà 0 < a + b + c < 28 nên a + b + c \(\in\) {1; 2; 4; 5; 8; 10; 20; 25}. Mà \(\overline{abc}\ge100\) nên a + b + c \(\le\) 10, do đó a + b + c \(\in\) {1; 2; 4; 5; 8; 10}. Thử từng trường hợp ta được đáp án đúng là a + b + c = 8 và \(\overline{abc}\) = 125

👁💧👄💧👁
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2019 lúc 7:14

\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)

- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)

- Nếu a; b đều khác 0

\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)

Bài 2 tương tự

\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)

\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó

Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?

Nguyễn Đình Thắng
Xem chi tiết
phú tâm
Xem chi tiết
Vũ Phương Nhi
Xem chi tiết
HT.Phong (9A5)
30 tháng 9 2023 lúc 14:11

loading...

Nguyễn Thị Huyền Trang
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết