Tính: A = \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
tính
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(B=\dfrac{1}{1}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{1}{7}+...+\dfrac{1}{97}\cdot\dfrac{1}{99}\)
\(B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(B=\dfrac{1}{1}-\dfrac{1}{99}\)
\(B=\dfrac{99}{99}-\dfrac{1}{99}\)
\(B=\dfrac{98}{99}\)
#YVA
B=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
B=\(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right):2\)
B=\(\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{97}-\dfrac{1}{99}\right):2\)
B=\(\left(\dfrac{1}{1}-\dfrac{1}{99}\right):2\)
B=\(\dfrac{98}{99}:2\)
B=\(\dfrac{49}{99}\)
\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
⇔ \(2A=2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)\)
⇔ 2A = \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)
⇔ 2A = \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
⇔ 2A = \(\dfrac{1}{3}-\dfrac{1}{99}\)
⇔ 2A = \(\dfrac{32}{99}\)
⇔ A = \(\dfrac{32}{99}:2\)
⇔ A = \(\dfrac{16}{99}\)
\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+......+\dfrac{1}{97.99}\)
\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+......+\dfrac{2}{97.99}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.....+\dfrac{1}{97}-\dfrac{1}{99}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{99}\)
\(\Leftrightarrow2A=\dfrac{32}{99}\)
\(\Leftrightarrow A=\dfrac{16}{99}\)
A=\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
2A=\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)
2A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)+...\(+\dfrac{1}{97}-\dfrac{1}{99}\)
2A=\(\dfrac{1}{3}-\dfrac{1}{99}\)
2A=\(\dfrac{32}{99}\)
A=\(\dfrac{32}{99}:2\)
A=\(\dfrac{16}{99}\)
Chúc bạn học tốt
a/ \(A=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{99.100}\)
b/ \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\)
c/ \(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99}\)
d/ \(A=\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2015}>4\)
1/ Tính nhanh nếu có thể:
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{95.97}+\dfrac{2}{97.99}\)
\(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{95\cdot97}+\dfrac{2}{97\cdot99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{33}{99}-\dfrac{1}{99}\)
\(=\dfrac{32}{99}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{95.97}+\dfrac{2}{97.99}\)
\(\Rightarrow\dfrac{2}{3}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{2}{7}+...+\dfrac{2}{95}-\dfrac{2}{97}+\dfrac{2}{97}-\dfrac{2}{99}\)
\(\Rightarrow\dfrac{2}{3}-\dfrac{2}{99}=\dfrac{64}{99}\)
chúc bạn học tốt
Tính nhanh :
\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....+\dfrac{2}{97.99}\)
\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(M=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99})\)
\(M=2.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
\(M=2.\dfrac{32}{99}\)
\(M=\dfrac{64}{99}\)
http://vietjack.com/giai-sach-bai-tap-toan-6/bai-95-trang-28-sach-bai-tap-toan-6-tap-2.jsp
\(m=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)
B= \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) +\(\dfrac{2}{5.7}\) +...+ \(\dfrac{2}{97.99}\) + \(\dfrac{2}{99.101}\)
\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\\ B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\\ B=\dfrac{1}{1}-\dfrac{1}{101}\\ B=\dfrac{101}{101}-\dfrac{1}{101}\\ B=\dfrac{100}{101}\)
tìm x:
a,\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\right).\left(x-1\right)+\dfrac{1}{10}.x=x-\dfrac{9}{10}\)
b,\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right).\left(x-2\right)+x=\dfrac{149}{99}.x-\dfrac{98}{99}\)
Tính nhanh:
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(A=1.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{5}+...+\dfrac{1}{2021}.\dfrac{1}{2023}=1-\dfrac{1}{2023}=\dfrac{2022}{2023}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2022}{2023}=\dfrac{1011}{2023}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}+\dfrac{2}{99.101}\)
giúp mình với ạ, giải từng bước nhé ạ
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2\cdot\dfrac{98}{303}=\dfrac{196}{303}\)
= 2/3 . 2/5 + 2/5 . 2/7 + ... + 2/99 . 2/101
= 2/3 - 2/5 + 2/5 - 2/7 + ... + 2/99 - 2/101
= 2/3 - 2/101
= 196/303
2/3 - 2/5 + 2/5 - 2/7 + 2/7 - 2/9 + .... + 2/97 - 2/99 + 2/99 - 2/101
= 2/3 - 2/101
= 196/303