Những câu hỏi liên quan
Nguyễn Thị Lan Anh
Xem chi tiết
Đức Minh
23 tháng 4 2017 lúc 17:20

c) Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\ge\dfrac{\left(1+1+1\right)^2}{A+B+C}=\dfrac{9}{A+B+C}\)

Dấu "=" xảy ra khi và chỉ khi\(\dfrac{1}{A}=\dfrac{1}{B}=\dfrac{1}{C}\)

Bình luận (0)
Tuyển Trần Thị
Xem chi tiết
Bùi Thị Vân
25 tháng 12 2017 lúc 15:39

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{9}{a+b+c}\ge4\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
\(\Leftrightarrow\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}+9\) \(\ge4\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)

\(\Leftrightarrow\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}+12\ge4\left(3+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\)
\(\Leftrightarrow\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\ge4\left(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\).
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) ta có:
\(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\le\dfrac{1}{4}\left(\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}\right)\) \(=\dfrac{1}{4}\left(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\right)\).
Suy ra \(4\left(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\le\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\) 9 (đpcm).




Bình luận (0)
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Thị Bình Yên
5 tháng 12 2018 lúc 13:20
Bình luận (0)
Nguyễn Lê Như Minh
Xem chi tiết
pham thi thu trang
23 tháng 4 2017 lúc 17:33

a,

(a+ b)(\(\frac{1}{a}\)+\(\frac{1}{b}\)) =1+\(\frac{a}{b}\)+\(\frac{b}{a}\)+1 =2+\(\frac{a}{b}\)+\(\frac{b}{a}\)>=4    {vì\(\frac{a}{b}\)+\(\frac{b}{a}\)>=2 theo bất đẳng thức cô-si }.dau"="xay ra khi va  chi khi a=b

b,

(a+b+c)(1/a+1/b+1/c)=1+a/b+a/c+1+b/a+b/c+1+c/a+c/b

=3+(\(\frac{a}{b}\)+\(\frac{b}{a}\))+(\(\frac{b}{c}\)+\(\frac{c}{b}\))+(\(\frac{a}{c}\)+c/a)>=3+2+2+2=9

đầu"="xảy ra khi và chỉ khi a=b=c                                 {>= có nghĩa là lớn hơn hoặc bằng}

Bình luận (0)
T.Huyền
Xem chi tiết
Unruly Kid
2 tháng 12 2017 lúc 16:49

Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)

\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)

Thật vậy, ta có:

\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)

Vậy ta cần chứng minh:

\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)

Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c


Bình luận (0)
dinh huong
Xem chi tiết
Lấp La Lấp Lánh
31 tháng 8 2021 lúc 17:48

Ta có: \(abc=b+2c\)

\(\Rightarrow a=\dfrac{b+2c}{bc}\)\(\Rightarrow a=\dfrac{1}{c}+\dfrac{2}{b}\)

Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

Ta có: \(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\)

\(=\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+3\left(\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{4}{b+c-a+c+a-b}+2.\dfrac{4}{b+c-a+a+b-c}+3.\dfrac{4}{c+a-b+a+b-c}=\dfrac{4}{2c}+2.\dfrac{4}{2b}+3.\dfrac{4}{2a}=\dfrac{2}{c}+\dfrac{4}{b}+\dfrac{6}{a}=2\left(\dfrac{1}{c}+\dfrac{2}{b}+\dfrac{3}{a}\right)=2\left(a+\dfrac{3}{a}\right)\ge2.2\sqrt{\dfrac{a.3}{a}}=4\sqrt{3}\)

(bất đẳng thức Cauchy cho 2 số dương)

\(ĐTXR\Leftrightarrow a=b=c=\sqrt{3}\)

 

Bình luận (0)
Lê Thị Thu Huyền
Xem chi tiết
Đỗ Linh Chi
1 tháng 12 2017 lúc 22:39

1) Áp dụng BĐT Cô si

ta có

\(\left(\sqrt{a+b}-\dfrac{1}{2}\right)^2\ge0\forall a,b\inĐK\)

\(\Leftrightarrow a+b-2\sqrt{a+b}.\dfrac{1}{2}+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow a+b+\dfrac{1}{4}\ge\sqrt{a+b}\)

vậy ĐPCM

Bình luận (2)
Kuro Kazuya
19 tháng 5 2018 lúc 17:08

Bài 2

Áp dụng bđt Cauchy ta có \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có:

\(\Rightarrow VP\le4\left(\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng bđt Cauchy ta có \(a+b\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b+\dfrac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\dfrac{1}{2}\right)^2\ge2.2\sqrt{ab}.\dfrac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có:

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow VT\ge VP\)

\(\Rightarrowđpcm\)

Bình luận (0)
Lê Huy Hoàng
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2022 lúc 15:13

\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{2}{b}\)

Tương tự:

\(\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{2}{a}\) ; \(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c}\)

Cộng vế:

\(2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (2)
lê thị thu huyền
Xem chi tiết
Nguyễn Cường
2 tháng 12 2017 lúc 0:01

1) áp dụng cauchy cho (a+b) và 1/4

\(\frac{\left(a+b\right)+\frac{1}{4}}{2}\ge\sqrt{\left(a+b\right)\cdot\frac{1}{4}}\)

\(\Rightarrow a+b+\frac{1}{4}\ge\sqrt{a+b}\) (Đẳng thức khi \(a+b=\frac{1}{4}\))

2) Ta có: \(\left(x+\frac{1}{2}\right)^2=x^2+x+\frac{1}{4}>x\)

\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2>a+b=\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}};\)

với x,y>0 ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}}\ge\frac{4}{\frac{1}{a}+\frac{1}{b}}\)\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2>\frac{4}{\frac{1}{a}+\frac{1}{b}};\)

Tương tự với \(\left(b+c+\frac{1}{2}\right)^2\) và \(\left(c+a+\frac{1}{2}\right)^2\)Ta có:

\(\left(a+b+\frac{1}{2}\right)^2+\left(b+c+\frac{1}{2}\right)^2+\left(c+a+\frac{1}{2}\right)^2\)

                                               \(>4\left(\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\right)\)

Không xảy ra đẳng thức (Nếu vế trái là \(\left(a+b+\frac{1}{4}\right)^2+\left(b+c+\frac{1}{4}\right)^2+\left(c+a+\frac{1}{4}\right)^2\) Thì mới xảy ra đẳng thức.

Bình luận (0)
6a1 is real
1 tháng 12 2017 lúc 23:22

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Bình luận (0)