CM \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\sqrt{n}\)
Bài 1: CM với mọi số nguyên dương n thì \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+.....+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Bài 2: CM với mọi số tự nhiên n>=2 đều có \(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+.....+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)
bai 1
(n+1)√n=√n^3+√n>2√(n^3.n)=2n^2>2(n^2-1)=2(n-1)(n+1)
1/[(n+1)√n]<1/[2(n-1)(n+1)]=1/4.[2/(n-1)(n+1)]
A=..
n =1 yes
n>1
A<1+1/4[2/1.3+2/3.5+..+2/(n-1)(n+1)
A<1+1/4[ 2-1/(n+1)]<1+1/2<2=>dpcm
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
Rút gọn
\(A=\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(B=\dfrac{1}{\sqrt{1}-\sqrt{2}}+\dfrac{1}{\sqrt{2}-\sqrt{3}}+....+\dfrac{1}{\sqrt{n-1}-\sqrt{n}}\) (n thuộc N, n>=2)
trong bai :
cho a= \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+....+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}< 1\)
co phan huong dan : \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
cho minh hoi buoc : \(\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\) tu dau ra .( giai thich chi tiet)
\(\dfrac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\left(\sqrt{n+1}-\sqrt{n}\right)=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\)
CM các biểu thức sau là một số nguyên:
a/\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
b/\(\left(\dfrac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\right)^2\)a: \(=\dfrac{2+\sqrt{3}}{2}:\left(1+\sqrt{\dfrac{2+\sqrt{3}}{2}}\right)+\dfrac{2-\sqrt{3}}{2}:\left(1-\sqrt{\dfrac{2-\sqrt{3}}{2}}\right)\)
\(=\dfrac{2+\sqrt{3}}{2}:\left(1+\sqrt{\dfrac{4+2\sqrt{3}}{4}}\right)+\dfrac{2-\sqrt{3}}{2}:\left(1-\sqrt{\dfrac{4-2\sqrt{3}}{4}}\right)\)
\(=\dfrac{2+\sqrt{3}}{2}:\left(1+\dfrac{\sqrt{3}+1}{2}\right)+\dfrac{2-\sqrt{3}}{2}:\left(1-\dfrac{\sqrt{3}-1}{2}\right)\)
\(=\dfrac{2+\sqrt{3}}{2}\cdot\dfrac{2}{2+\sqrt{3}+1}+\dfrac{2-\sqrt{3}}{2}\cdot\dfrac{2}{2-\sqrt{3}+1}\)
\(=\dfrac{2+\sqrt{3}}{3+\sqrt{3}}+\dfrac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{9-3}\)
\(=\dfrac{6-2\sqrt{3}+3\sqrt{3}-3+6+2\sqrt{3}-3\sqrt{3}-3}{6}\)
\(=\dfrac{6}{6}=1\)
A = \(\dfrac{4+\sqrt{3}}{\sqrt{1}+\sqrt{3}}+\dfrac{6+\sqrt{8}}{\sqrt{3}+\sqrt{5}}+...+\dfrac{2n+\sqrt{n^2-1}}{\sqrt{n-1}+\sqrt{n+1}}+\dfrac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)
B= \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}+\dfrac{1}{\sqrt{4}-\sqrt{5}}-....+\dfrac{1}{\sqrt{100}-\sqrt{101}}\)
a)tính tổng S=\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+..+\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\)
b)Áp dụng, tìm phần nguyên của A=\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{5}+\sqrt{6}}+...+\dfrac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\) với n lẻ
Câu a : Ta có :
\(\dfrac{1}{1+\sqrt{2}}=\dfrac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}=\dfrac{1-\sqrt{2}}{1-2}=\dfrac{1-\sqrt{2}}{-1}=-1+\sqrt{2}\)
\(\dfrac{1}{\sqrt{2}+\sqrt{3}}=\dfrac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}=\dfrac{\sqrt{2}-\sqrt{3}}{2-3}=\dfrac{\sqrt{2}-\sqrt{3}}{-1}=-\sqrt{2}+\sqrt{3}\)
.....................
\(\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}=\dfrac{\sqrt{n^2-1}-\sqrt{n^2}}{\left(\sqrt{n^2-1}+\sqrt{n^2}\right)\left(\sqrt{n^2-1}-\sqrt{n^2}\right)}=\dfrac{\sqrt{n^2-1}-\sqrt{n^2}}{-1}=-\sqrt{n^2-1}+\sqrt{n^2}\)
Thay vào ta được :
\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n^2-1}+\sqrt{n^2}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...........-\sqrt{n^2-1}+\sqrt{n^2}\)
\(=-1+\sqrt{n^2}\)
Câu b:
Đặt biểu thức đã cho là $A$
Ta có:
\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\right)\)
\(\Leftrightarrow A> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n^2-1}+\sqrt{n^2}}\right)\)
\(\Leftrightarrow A> \frac{1}{2}(n-1)\) (áp dụng cách tính toán phần a)
Lại có:
\(A< \frac{1}{2}\left(\frac{1}{0+\sqrt{1}}+\frac{1}{1+\sqrt{2}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}\right)+....+\frac{1}{2}\left(\frac{1}{\sqrt{n^2-3}+\sqrt{n^2-2}}+\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\right)\)
\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{0+\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{n^2-2}+\sqrt{n^2-1}}\right)\)
\(\Leftrightarrow A< \frac{\sqrt{n^2-1}}{2}\) (áp dụng cách tính toán của phần a)
Vậy \(\frac{\sqrt{n^2-1}}{2}> A> \frac{n-1}{2}\) hay \(\sqrt{t(t+1)}> A> t\) (đặt \(n=2t+1\) )
Mà \(\sqrt{t(t+1)}< \sqrt{(t+1)(t+1)}=t+1\)
Do đó: \(t+1> A> t\)
\(\Rightarrow \lfloor{A}\rfloor=t=\frac{n}{2}\)
CM biểu thức sau có giá trị là một số nguyên
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+\dfrac{\sqrt{4}-\sqrt{3}}{4-3}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\) Vậy , biểu thức A có giá trị nguyên .
chứng minh rằng với số tự nhiên n,n lớn hơn 4 ta có:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}< 1\)
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó:
\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)