\(9^{x-1}\) =\(\dfrac{1}{9}\)
1) \(\dfrac{1}{x^2+6x+9}+\dfrac{1}{6x-x^2+9}+\dfrac{x}{x^2-9}\) 2) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\) 3) \(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\)
\((\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{9}+\dfrac{1}{10})\times x=\dfrac{1}{9}+\dfrac{2}{8}+\dfrac{3}{7}+...+\dfrac{8}{2}+\dfrac{9}{1}\)
`#iv`
`(1/2 +1/3 +1/4 +... +1/10)*x=1/9 + 2/8 + 3/7 +... +9/1`
`=>(1/2+1/3+1/4+...+1/10)*x=10*(1/10 + 1/9+1/8+1/7+...+1/2)`
`=>x=10*(1/10 + 1/9+1/8+1/7+...+1/2):(1/10 + 1/9+1/8+1/7+...+1/2)`
`=>x=10`
Vậy `x=10`
b)\(\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{9}+\dfrac{1}{10}\right)x=\dfrac{1}{9}+\dfrac{2}{8}+\dfrac{3}{7}+...+\dfrac{8}{2}+\dfrac{9}{1}\)
Tìm x:
a) \(\dfrac{-x}{4}=\dfrac{-9}{x}\)
b) \(\dfrac{5}{9}+\dfrac{x}{-1}=\dfrac{-1}{3}\)
c) \(x:3\dfrac{1}{15}=1\dfrac{1}{2}\)
d) \(\dfrac{3x-1}{-5}=\dfrac{-5}{3x-1}\)
a) \(\dfrac{-x}{4}=\dfrac{-9}{x}\)
\(\Rightarrow-x^2=-36\)
\(\Rightarrow x^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
Vậy: \(x\in\left\{6;-6\right\}\)
b) \(\dfrac{5}{9}+\dfrac{x}{-1}=-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{5}{9}+\dfrac{-9x}{9}=\dfrac{-3}{9}\)
\(\Rightarrow5-9x=-3\)
\(\Rightarrow-9x=-8\)
\(\Rightarrow x=\dfrac{8}{9}\)
Vậy: \(x=\dfrac{8}{9}\)
c) \(x:3\dfrac{1}{5}=1\dfrac{1}{2}\)
\(\Rightarrow x:\dfrac{16}{5}=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{2}.\dfrac{16}{5}\)
\(\Rightarrow x=\dfrac{24}{5}\)
Vậy: \(x=\dfrac{24}{5}\)
d) \(\dfrac{3x-1}{-5}=\dfrac{-5}{3x-1}\)
\(\Rightarrow\left(3x-1\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-\dfrac{4}{3}\right\}\)
Cho x, y, z thỏa mãn \(\dfrac{1}{3^x}+\dfrac{1}{3^y}+\dfrac{1}{3^z}=1\). Chứng minh rằng:
\(\dfrac{9^x}{3^x+3^{y+z}}+\dfrac{9^y}{3^y+3^{z+x}}+\dfrac{9^z}{3^z+3^{x+y}}\ge\dfrac{3^x+3^y+3^z}{4}\)
\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)
BĐT cần chứng minh trở thành:
\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)
Thật vậy, ta có:
\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)
\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)
Áp dụng AM-GM:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)
Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm
Câu 1. 1- (x + \(\dfrac{1}{3}\) )\(^2\) = \(\dfrac{5}{9}\)
Câu 2. 15 :( \(\dfrac{4}{9}\))\(^2\) . (\(\dfrac{8}{27}\))\(^2\) : (\(\dfrac{2}{3}\))\(^9\)
Câu 1:
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{2}{3}\\x+\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
\(1,\Leftrightarrow\left(x+\dfrac{1}{3}\right)^2=\dfrac{4}{9}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{2}{3}\\x+\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\\ 2,=15:\left(\dfrac{2}{3}\right)^4\cdot\left(\dfrac{2}{3}\right)^6:\left(\dfrac{2}{3}\right)^9=15\cdot\left(\dfrac{2}{3}\right)^{-7}=15\cdot\dfrac{3^7}{2^7}=15\cdot\dfrac{2187}{128}=\dfrac{32805}{128}\)
Tìm x, biết:
a) \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+....+\dfrac{3}{x\left(x+3\right)}=\dfrac{9}{38}\)
b) \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
a)
\(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{x+3}=\dfrac{9}{38}\\\\ \dfrac{1}{x+3}=\dfrac{1}{4}-\dfrac{9}{38}\\ \dfrac{1}{x+3}=\dfrac{1}{76}\\ x+3=76\\ x=73.\)
b)
\(\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ \dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ 2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ 2.\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}=\dfrac{1}{18}\\ x+1=18\\ x=17.\)
tìm x , biết:
a) \(x\) : \(4\dfrac{1}{3}\) = -2,5 b) \(\dfrac{3}{5}x\) + \(\dfrac{1}{4}\) = \(\dfrac{1}{10}\)
c) \(2\dfrac{7}{9}\) \(-\) \(\dfrac{12}{13}x\) = \(\dfrac{7}{9}\) d)\(\dfrac{-2}{3}-\dfrac{1}{3}\)\(\left(2x-5\right)=\dfrac{3}{2}\)
a, \(x\) : \(\dfrac{13}{3}\) = -2,5
\(x\) = -2,5 . \(\dfrac{13}{3}\)
\(x\) = \(\dfrac{65}{6}\)
b,\(\dfrac{3}{5}\)\(x\) = \(\dfrac{1}{10}-\)\(\dfrac{1}{4}\)
\(\dfrac{3}{5}x\) = \(\dfrac{-3}{20}\)
\(x\) = \(\dfrac{-3}{20}\) : \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{-1}{4}\)
c, \(\dfrac{25}{9}-\dfrac{12}{13}x=\dfrac{7}{9}\)
\(\dfrac{12}{13}x\)\(=\dfrac{25}{9}-\dfrac{7}{9}\)
\(\dfrac{12}{13}x=2\)
\(x=2:\dfrac{12}{13}\)
\(x=\dfrac{13}{6}\)
tìm x
a) \(1\dfrac{1}{2}:x=\dfrac{1}{2}\) b)\(\dfrac{7}{9}-x=\dfrac{2}{3}\) c)\(\dfrac{8}{7}:x=\dfrac{6}{7}\) d)\(\dfrac{9}{5}-x=\dfrac{3}{7}\)
a) \(\Leftrightarrow\dfrac{3}{2}:x=\dfrac{1}{2}\\ \Leftrightarrow x=\dfrac{3}{2}:\dfrac{1}{2}\\ \Leftrightarrow x=3\)
b) \(\Leftrightarrow x=\dfrac{7}{9}-\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{1}{9}\)
c) \(\Leftrightarrow x=\dfrac{8}{7}:\dfrac{6}{7}\\ \Leftrightarrow x=\dfrac{4}{3}\)
d) \(\Leftrightarrow x=\dfrac{9}{5}-\dfrac{3}{7}\\ \Leftrightarrow x=\dfrac{48}{35}\)
a) x = 3
b) x = \(\dfrac{1}{9}\)
c) x = \(\dfrac{4}{3}\)
d)\(\dfrac{48}{35}\)
\(9\left(x-1\right)^2-\dfrac{4}{9}:\dfrac{2}{9}=\dfrac{1}{4}\)
giúp mik y
\(\Rightarrow9\left(x-1\right)^2-2=\dfrac{1}{4}\\ \Rightarrow9\left(x-1\right)^2=\dfrac{9}{4}\\ \Rightarrow\left(x-1\right)^2=4\\ \Rightarrow\left[{}\begin{matrix}x-1=2\\1-x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)