Cho 2 số a,b thỏa mãn \(a^2+b^2+ab=7\)
Tính gt của bt biết:\(\dfrac{a^2+b^2+\left(a+b\right)^2}{a^4+b^4+\left(a+b\right)^4}\)
a,b,c là các số thực dương thỏa mãn a+b+c=3. CMR: \(\dfrac{a\left(a+bc\right)^2}{b\left(ab+2c^2\right)}+\dfrac{b\left(b+ca\right)^2}{c\left(bc+2a^2\right)}+\dfrac{c\left(c+ab\right)^2}{a\left(ca+2b^2\right)}>=4\)
Trước hết theo BĐT Schur bậc 3 ta có:
\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)
\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
Áp dụng (1):
\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b>0 thỏa mãn \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\). Tính max P =\(\dfrac{1}{a^4+b^2+2ab^2}+\dfrac{1}{b^4+a^2+2ba^2}\)
Cho các số thực dương : \(a;b;c\) thỏa mãn điều kiện : \(ab+bc+ac+abc=4\)
Chứng minh rằng : \(\dfrac{1}{\sqrt{2.\left(a^2+b^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(b^2+c^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(c^2+a^2\right)}+4}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán.
Em cám ơn nhiều lắm ạ!
Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\)
Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\)
" = " \(\Leftrightarrow a=b=c=1\)
Cho a, b, c > 0 thỏa mãn : \(\dfrac{3}{b}+\dfrac{4}{a}+\dfrac{4}{c}=3\)
Tìm GTNN của : \(A=\dfrac{2\left(a+b\right)^2}{2a+3b}+\dfrac{\left(b+2c\right)^2}{2b+c}+\dfrac{\left(2c+a\right)^2}{c+2a}\)
Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)
\(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)
\(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)
Cộng 3 cái vào, ta có
A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)
Vậy A min = 24
Neetkun ^^
cho hai số dương a,b thỏa mãn a+b=2.chứng minh rằng:
a \(a^2+b^2\) lớn hơn bằng 2
b \(a^4+b^4\) lớn hơn bằng 2
c \(a^2b^2\left(a^2+b^2\right)\) bé hơn bằng 2
d \(8\left(a^4+b^4\right)+\dfrac{1}{ab}\) lớn hơn bằng 17
a.
Ta có: \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{3}.2^2=2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=1\)
b.
\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{2}.2^2=2\) (sử dụng kết quả \(a^2+b^2\ge2\) của câu a)
Dấu "=" xảy ra khi \(a=b=1\)
c.
\(a^2b^2\left(a^2+b^2\right)=\dfrac{1}{2}ab.2ab\left(a^2+b^2\right)\le\dfrac{1}{8}\left(a+b\right)^2\left(2ab+a^2+b^2\right)^2=2\)
d.
\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge8.2+\dfrac{4}{\left(a+b\right)^2}=16+\dfrac{4}{2^2}=17\) (sử dụng kết quả câu b)
Cho a,b,c>0 thỏa mãn a+b+c=3 CMR:
\(\dfrac{a^4}{\left(a+2\right)\left(b+2\right)}+\dfrac{b^4}{\left(b+2\right)\left(c+2\right)}+\dfrac{c^4}{\left(c+2\right)\left(a+2\right)}\ge\dfrac{1}{3}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)
\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)
\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)
Cộng theo vế và rút gọn:
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
A=\(\left(\dfrac{x-5\sqrt{x}+4}{x\sqrt{x}-3x+2\sqrt{x}}-\dfrac{3\sqrt{x}+3}{\sqrt{x}+2-x}\right):\left(\dfrac{x-\sqrt{x}-6}{x-3\sqrt{x}}-\dfrac{x-2\sqrt{x}}{x-4\sqrt{x}+4}\right)+\sqrt{x}\)a). Rút gọn A
b). Cho a,b là 2 số dương thỏa mãn a+b≥4. tìm GTNN của biểu thức B=\(5a+11b+\dfrac{2}{a}+\dfrac{72}{b}\)
a: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}+4}{x\sqrt{x}-3x+2\sqrt{x}}-\dfrac{3\sqrt{x}+3}{-x+\sqrt{x}+2}\right):\left(\dfrac{x-\sqrt{x}-6}{x-3\sqrt{x}}-\dfrac{x-2\sqrt{x}}{x-4\sqrt{x}+4}\right)+\sqrt{x}\)
\(=\left(\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)+\sqrt{x}\)
\(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}+\sqrt{x}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}+\sqrt{x}\)
\(=-\sqrt{x}-1+\sqrt{x}\)
=-1
1. Cho 3 số dương a, b, c thỏa mãn ab + bc + ca = 3abc
Tính GTNN của bt : \(M=\frac{2\left(a^2b^2+b^2c^2+c^2a^2\right)+abc}{a^2b^2c^2}\)
2. Cho a, b, c\(\inℝ^+\)thỏa mãn a + b + c = 4. Cmr BĐT sau luôn đúng :
\(10\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{4+5a}{4-a}+\frac{4+5b}{4-b}+\frac{4+5c}{4-c}\)
1. Ta có: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)
Áp dụng Cauchy ta được:
\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)
\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)
\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)
\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)
\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)
\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)
\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)
\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)
\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)
Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)
cho a,b>0 thỏa mãn \(\left(\sqrt{a}+2\right)\left(\sqrt{b}+2\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức T=\(\dfrac{a^4}{b}+\dfrac{b^4}{a}\)