Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Luyri Vũ
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 6 2021 lúc 8:56

BĐT bên trái rất đơn giản, chỉ cần áp dụng:

\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được

Ta chứng minh BĐT bên phải:

\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)

\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

Thật vậy, ta có:

\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)

\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)

\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị

cao minh thành
Xem chi tiết
Nguyễn Thị Ngọc Thơ
31 tháng 7 2018 lúc 9:25

Link này bạn: Câu hỏi của 2K4 - Toán lớp 8 - Học toán với OnlineMath

2K4
Xem chi tiết
Duc Loi
10 tháng 6 2018 lúc 10:39

Đặt \(a=\frac{x+y}{2};b=\frac{y+z}{2};c=\frac{z+x}{2}\)

Thì \(\Rightarrow a+b+c=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{x+y+y+z+z+x}{2}=\)\(x+y+z=1\)

Bất đẳng thức đã tương đương với \(x+2y+z\ge4\left(x+y\right).\left(y+z\right).\left(z+x\right)\)

\(\Rightarrow a+b\ge16abc\)

Ta có: \(\left(a+b\right).\left(a+b+c\right)^2\ge4\left(a+b\right).4c\left(a+b\right)\ge16abc\left(đpcm\right).\)

2K4
10 tháng 6 2018 lúc 10:42

cảm ơn bn

Dương
10 tháng 6 2018 lúc 10:47

Ta có:

\(x\ge0,y\ge0,z\ge0\) và \(x+y+z=1\)

\(\Rightarrow0\le y\le1\)

Ta lại có:

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\)

Aps dụng BĐT: \(\left(a+b\right)^2\ge4ab\)

Ta được: \(4\left(y+z\right)\left(1-z\right)\le\left(1+y\right)^2\)

Nên: \(4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)\)

\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)\left(1-y\right)^2\)

Mà \(\left(1-y\right)^2\le1\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le1+y\)

\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le x+y+z+y\)

\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le x+2y+z\left(đpcm\right)\)

Nguyễn Bùi Đại Hiệp
Xem chi tiết
 Mashiro Shiina
15 tháng 3 2019 lúc 21:00

Đặt: \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\x+z=c\end{matrix}\right.\Leftrightarrow a+b+c=2\)

\(bđt\Leftrightarrow a+b\ge4abc\Leftrightarrow4\left(a+b\right)\ge16abc\)

Mà: \(4\left(a+b\right)=\left(a+b\right)\left(a+b+c\right)^2=\left(a+b\right)\left[\left(a+b\right)+c\right]^2\ge4\left(a+b\right)^2c\ge16abc\) (bđt \(\left(m+n\right)^2\ge4mn\))

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}a=b\\a+b=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=y+z\\x+2y+z=x+z\end{matrix}\right.\Leftrightarrow x=z=\frac{1}{2};y=0\)

bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 5 2020 lúc 11:24

Câu 1:

\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)

\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)

\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)

\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)

\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)

(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

Nguyễn Việt Lâm
3 tháng 5 2020 lúc 11:25

Câu 2:

Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D

\(x^2+y^2+z^2+xyz=4\)

\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)

\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)

Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)

\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)

\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)

\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)

\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)

\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)

bach nhac lam
2 tháng 5 2020 lúc 23:01

@Nguyễn Việt Lâm, @Akai Haruma, @tth_new

giúp em vs ạ! e cảm ơn nhiều!

pham trung thanh
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Diệu Huyền
7 tháng 2 2020 lúc 22:31

Ta có: \(x+y+z=1\) nên:

\(\Rightarrow y+z=1-x\)

Thay \(y+z=1-x\) và áp dụng BĐT \(\left(a+b\right)^2\ge4ab\) ta được:

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2\left(1-y\right)\)

\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)

\(\Rightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le1+y=x+2y+z\left(đpcm\right)\)

Khách vãng lai đã xóa
dbrby
Xem chi tiết
Trần Phúc Khang
3 tháng 7 2019 lúc 15:56

Xét \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

<=> \(a^2+b^2\ge2ab\) (luôn đúng)

Dấu bằng xảy ra khi a=b

Áp dụng ta có

\(\frac{1}{x+3y}+\frac{1}{y+2z+x}\ge\frac{4}{2\left(x+2y+z\right)}=\frac{2}{x+2y+z}\)

\(\frac{1}{y+3z}+\frac{1}{z+2x+y}\ge\frac{2}{x+y+2z}\)

\(\frac{1}{z+3x}+\frac{1}{x+2y+z}\ge\frac{2}{2x+y+z}\)

Cộng các vế của các bđt trên

=> ĐPCM

Dấu bằng xảy ra khi x=y=z

Nhật Minh
Xem chi tiết
Lightning Farron
23 tháng 4 2017 lúc 22:34

Haha không giỡn nữa :v :focus:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(L.H.S=Σ\dfrac{1}{2x+y+z}=7Σ\dfrac{1}{2\left(x+3y\right)+\left(y+3z\right)+4\left(z+3x\right)}\)

\(=\dfrac{1}{7}Σ\dfrac{\left(2+1+4\right)^2}{2\left(x+3y\right)+\left(y+3z\right)+4\left(z+3x\right)}\)

\(\le\dfrac{1}{7}Σ\left(\dfrac{2^2}{2\left(x+3y\right)}+\dfrac{1^2}{y+3z}+\dfrac{4^2}{4\left(z+3x\right)}\right)\)

\(=\dfrac{1}{7}Σ\left(\dfrac{2}{x+3y}+\dfrac{1}{y+3z}+\dfrac{4}{z+3x}\right)\)

\(=\dfrac{1}{7}Σ\dfrac{7}{x+3y}=Σ\dfrac{1}{x+3y}=R.H.S\)

Kuro Kazuya
23 tháng 4 2017 lúc 23:18

Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}\le\dfrac{4}{x+y}\) \(\forall x,y>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+3y}+\dfrac{1}{y+2z+x}\le\dfrac{4}{2x+4y+2z}=\dfrac{2}{x+2y+z}\\\dfrac{1}{y+3z}+\dfrac{1}{z+2x+y}\le\dfrac{4}{2x+2y+4z}=\dfrac{2}{x+y+2z}\\\dfrac{1}{z+3x}+\dfrac{1}{x+2y+z}\le\dfrac{4}{4x+2y+2z}=\dfrac{2}{2x+y+z}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{x+3y}+\dfrac{1}{y+3z}+\dfrac{1}{z+3x}+\dfrac{1}{y+2z+x}+\dfrac{1}{z+2x+y}+\dfrac{1}{x+2y+z}\le\dfrac{2}{x+2y+z}+\dfrac{2}{x+y+2z}+\dfrac{2}{2x+y+z}\)

\(\Rightarrow VT\le\left(\dfrac{2}{x+2y+z}-\dfrac{1}{x+2y+z}\right)+\left(\dfrac{2}{x+y+2z}-\dfrac{1}{y+x+2z}\right)+\left(\dfrac{2}{2x+y+z}-\dfrac{1}{z+2x+y}\right)\)

\(\Rightarrow VT\le\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}+\dfrac{1}{2x+y+z}\)

\(\Leftrightarrow\dfrac{1}{x+3y}+\dfrac{1}{y+3z}+\dfrac{1}{z+3x}\le\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}+\dfrac{1}{2x+y+z}\) ( đpcm )

Cường Vũ Mạnh
23 tháng 4 2017 lúc 22:27

cau nay cau de y mot y la ra

chi lam the nay thoi cac cai sau cau dua vao ma lam tuong tu\(\dfrac{1}{x+3y}+\dfrac{1}{x+y+2z}\ge\dfrac{4}{2x+4y+2z}=\dfrac{2}{x+2y+z}\)