Link này bạn: Câu hỏi của 2K4 - Toán lớp 8 - Học toán với OnlineMath
Link này bạn: Câu hỏi của 2K4 - Toán lớp 8 - Học toán với OnlineMath
cho x,y,z dương thỏa mãn x+y+z=1. CMR: \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge4\)
cho x,y,z ≠0 và đôi một khác nhau thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). . CMR: \(\left(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\right)\left(x^{2016}+y^{2017}+z^{2018}\right)=xy+yz+zx\)
Cho ba số dương x, y, z. Thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
Cmr: \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}< =1\)
Cho x>0,y>0,z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\).CMR:\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
cho x,y,z là các số dương thỏa điều kiện \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\)
cmr:\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
cho x,y,z thỏa mãn xyz=1. tìm GTNN của \(T=\dfrac{xy}{z^2x+z^2y}+\dfrac{yz}{x^2y+x^2z}+\dfrac{zx}{y^2x+y^2z}\)
cho x>0 , y> 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). cmr:\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)