Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Ngọc Tuyết Nung

cho x>0 , y> 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). cmr:\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)

TNA Atula
6 tháng 11 2018 lúc 21:20

\(\dfrac{1}{2x+y+z}=\dfrac{1}{x+y+x+z}\le\dfrac{1}{4}.\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)

\(\le\dfrac{1}{4}.\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)=\dfrac{1}{16}.\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Tuong tu : \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}.\left(\dfrac{2}{y}+\dfrac{1}{z}+\dfrac{1}{x}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{2}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)\)

=> \(VT\le\dfrac{1}{16}.\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{2}{y}+\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{2}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)\)

= \(\dfrac{1}{16}.\left[4.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\right]=1\left(dpcm\right)\)

 Mashiro Shiina
6 tháng 11 2018 lúc 21:13

Áp dụng bđt Cauchy-Schwarz:

\(\dfrac{1}{2x+y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

Cộng theo vế suy ra đpcm. \("="\Leftrightarrow x=y=z=\dfrac{3}{4}\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Dương Thị Thu Ngọc
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Luyri Vũ
Xem chi tiết
Luyri Vũ
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
camcon
Xem chi tiết
dia fic
Xem chi tiết