Aps dụng bất đẳng thức cô si cho 2 số 1-x và 1-x ta có:
\(\dfrac{1-x+1-z}{2}\ge\sqrt{\left(1-x\right)\left(1-z\right)}\)
\(\Leftrightarrow\left(1-z\right)\left(1-x\right)\le\left(\dfrac{1-z+1-x}{2}\right)^2\)
\(\Leftrightarrow4\left(1-z\right)\left(1-x\right)\le\left(1+y\right)^2\)
\(\Leftrightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)\)
Ta có: \(1-y^2\le1\)
\(\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y\right)^2=\left(x+2y+z\right)\left(1-y\right)^2\)
Do đó: \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le x+2y+z\)
Áp dụng BĐT cô-si cho 2 số 1-x và 1-z ta được:
\(\dfrac{1-x+1-z}{2}\ge\sqrt{\left(1-x\right)\left(1-z\right)}\)
\(\Leftrightarrow\text{ ( 1 − x ) ( 1 − z )\le(\dfrac{\text{1 − x + 1 −}z}{2})^2 }\)
\(\Leftrightarrow\text{4 ( 1 − x ) ( 1 − z ) ≤ ( 1 + y ) ^2}\)
\(\Leftrightarrow\text{ 4 ( 1 − x ) ( 1 − z ) ( 1 − y ) ≤ ( 1 + y ) ^2 ( 1 − y )}\)
mặt khác\(\text{ 1 − y ^2 ≤ 1}\)
\(\text{( 1 + y ) ^2 ( 1 − y ) = ( 1 + y ) ( 1 − y ^2) = ( x + 2y + z ) ( 1 − y^2 ) (1+y)^2(1−y)=(1+y)(1−y^2)=(x+2y+z)(1−y^2)}\)Do đó: 4(1−x)(1−y)(1−z)≤x+2y+z