\(\dfrac{\text{a}b}{cd}=\dfrac{\left(\text{a}-b\right)^2}{\left(c-d\right)^2}\)
\(\text{Cho a,b,c đôi một khác nhau}.\text{Chứng minh:}\)
\(P=\dfrac{a^2+b^2}{\left(a-b\right)^2}+\dfrac{b^2+c^2}{\left(b-c\right)^2}+\dfrac{c^2+a^2}{\left(c-a\right)^2}\ge\dfrac{5}{2}\)
Bài này trong đề nào đó mới đây:
Đặt \(\dfrac{a+b}{a-b}=x;\dfrac{b+c}{b-c}=y;\dfrac{c+a}{c-a}=z\).
Ta có: \(2P=\dfrac{\left(a-b\right)^2+\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(b-c\right)^2+\left(b+c\right)^2}{\left(b-c\right)^2}+\dfrac{\left(c-a\right)^2+\left(c+a\right)^2}{\left(c-a\right)^2}=3+x^2+y^2+z^2=3+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\),
Mặt khác dễ dàng chứng minh được: \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\Leftrightarrow xy+yz+zx=-1\).
Từ đó \(2P=\left(x+y+z\right)^2+5\ge5\Leftrightarrow P\ge\dfrac{5}{2}\).
Bài này là bất đẳng thức nên mình không tìm điểm rơi.
Cho :\(\dfrac{a}{b}=\dfrac{c}{d}CMR:\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}v\text{à}\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Đặt ; \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\) Ta có; \(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b.\left(k+1\right)}{d.\left(k+1\right)}\)
Cho a, b, c là ba số dương thỏa mãn: \(\dfrac{\text{2b+c-a}}{a}=\dfrac{\text{2c-b+a}}{b}=\dfrac{\text{ 2a+b-c}}{c}\)
Tính giá trị biểu thức: P = \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3a-2c\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)} \)
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
Cho \(\dfrac{\text{a}}{b}=\dfrac{c}{d}.CM\)
\(\dfrac{3\text{a}+5b}{3\text{a}-5b}=\dfrac{3c+5d}{3c-5d}\)
\(\left(\dfrac{\text{a}+b}{c+d}\right)^2=\dfrac{\text{a}^2+b^2}{c^2+d^2}\)
1) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (1)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
2) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)
Ta có: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (2)
Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
a)\(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\) b)\(\left(0,\left(3\right)+\dfrac{\text{|}-2\text{|}}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)
a: \(\left(\dfrac{5}{9}-\dfrac{\sqrt{9}}{12}\right):\dfrac{3}{4}+\dfrac{11}{3}:\dfrac{3}{4}\)
\(=\left(\dfrac{5}{9}-\dfrac{3}{12}\right)\cdot\dfrac{4}{3}+\dfrac{11}{3}\cdot\dfrac{4}{3}\)
\(=\left(\dfrac{5}{9}-\dfrac{1}{4}+\dfrac{11}{3}\right)\cdot\dfrac{4}{3}\)
\(=\dfrac{20-9+132}{36}\cdot\dfrac{4}{3}\)
\(=\dfrac{143}{3}\cdot\dfrac{1}{9}=\dfrac{143}{27}\)
b: \(\left(0.\left(3\right)+\dfrac{\left|-2\right|}{3}\right):\dfrac{\sqrt{25}}{4}-\left(2^3+3^2\right)^0\)
\(=\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\cdot\dfrac{4}{5}-1\)
\(=\dfrac{4}{5}-1=-\dfrac{1}{5}\)
\(\dfrac{\text{a}}{b}=\dfrac{b}{c}=\dfrac{c}{d}.CM\left(\dfrac{\text{a}+b+c}{b+c+d}\right)^3=\dfrac{\text{a}}{d}\)
a/b=b/c=c/d=a+b+c/b+c+d=a mu 3+bmu 3+c mu 3/b mu 3+c mu 3+d mu 3=a/d
Ta có : \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)=\(\dfrac{a+b+c}{b+c+d}\)
=> \(\left(\dfrac{a}{b}\right)^3\)=\(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(1)
mà \(\left(\dfrac{a}{b}\right)^3\)= \(\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}\)=\(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)=\(\dfrac{a}{d}\)(2)
Từ (1);(2)=> \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)=\(\dfrac{a}{d}\)
a.,\(\dfrac{4}{5}+5\dfrac{1}{2}\text{x }\left(4,5-2\right)=\dfrac{7}{10}\) b,125%x\(\dfrac{17}{4}:\left(1\dfrac{5}{16}-0,5\right)+2008\)
c,\(\dfrac{5}{11}+\left(\dfrac{16}{11}+1\right)\) d, \(\dfrac{3}{17}+\dfrac{11}{4}+\dfrac{5}{8}+\dfrac{14}{17}+\dfrac{3}{8}\)
`a)4/5+5 1/2 xx (4,5-2)+7/10`
`=4/5+11/2*2,5+7/10`
`=0,8+2,2+0,7`
`=3+0,7=3,7`
`b)125%xx 17/4:(1 5/16-0,5)+2008`
`=1,25xx4,25:13/16+2008`
`=85/13+2008`
`=2014 7/13`
`c)5/11+(16/11+1)`
`=5/11+1+5/11+1`
`=2+10/11=32/11`
`d)3/17+11/4+5/8+14/17+3/8`
`=3/17+14/17+5/8+3/8+11/4`
`=1+1+11/4`
`=19/4`
a)
\(\dfrac{4}{5}+5\dfrac{1}{2}x\left(4,5-2\right)=\dfrac{7}{10}\)
<=> \(\dfrac{11}{2}x\times2,5=\dfrac{7}{10}-\dfrac{4}{5}=\dfrac{-1}{10}\)
<=> \(\dfrac{55}{4}x=\dfrac{-1}{10}< =>x=\dfrac{-2}{275}\)
b) \(125\%\times\dfrac{17}{4}:\left(1\dfrac{5}{16}-0,5\right)+2008\)
= \(\dfrac{85}{16}:\left(\dfrac{21}{16}-\dfrac{1}{2}\right)+2008=\dfrac{85}{16}:\dfrac{13}{16}+2008=\dfrac{26189}{13}\)
c) \(\dfrac{5}{11}+\left(\dfrac{16}{11}+1\right)\)
= \(\dfrac{21}{11}+1=\dfrac{32}{11}\)
d) \(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)+\dfrac{11}{4}\)
= 1 + 1 + \(\dfrac{11}{4}\) = \(\dfrac{19}{4}\)
Tìm x:
\(a\)) \(\dfrac{2}{3}+\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}\)
\(b\)) \(\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{27}{8}\right)^3=\dfrac{81}{16}\)
\(c\)) \(\dfrac{1}{2}.2^x+4.2^x=9.2^5\)
\(d\)) \(\text{12 - (2x +1)}^2=-69\)
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
\(a,\dfrac{2}{3}+\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}\)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}-\dfrac{2}{3}\)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{1}{3}\right)^3\)
\(\Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\)
\(x=\dfrac{1}{2}+\dfrac{1}{3}\)
\(x=\dfrac{1}{5}\)
\(\text{Tìm x, biết:}\)
\(a\)) \(20\text{%}x-x+\dfrac{1}{5}=\dfrac{3}{4}\)
\(b\)) \(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)
\(c\)) \(\left(x-\dfrac{3}{4}\right)\left(4+3x\right)=0\)
\(d\)) \(x-\dfrac{1}{3}x+\dfrac{1}{5}x=\dfrac{-26}{5}\)
\(e\)) \(50\text{%}x+\dfrac{2}{3}x=x-5\)
\(g\)) \(\dfrac{2}{3}\left(x+\dfrac{9}{5}\right)-\dfrac{3}{10}.\left(5x-\dfrac{1}{3}\right)=\dfrac{7}{15}\)
câu c) mang tính mua vui hay gì hả bn
mếu thật thì x=0,x=số nào cx đc(câu trả lời này mang tính mua vui thôi nhé)