Cho \(n\in N\)và \(a+b>0\). Chứng minh rằng \(\left(\dfrac{a+b}{2}\right)^n\le\dfrac{a^n+b^n}{2}\)
Cho a, b, c > 0 thỏa mãn ab + bc + ca = 3. Chứng minh rằng: \(\dfrac{1}{1+a^2\left(b+c\right)}+\dfrac{1}{1+b^2\left(a+c\right)}+\dfrac{1}{1+c^2\left(a+b\right)}\le\dfrac{1}{abc}\)
Chứng minh rằng :
a) \(\dfrac{1.3.5.....39}{21.22.23.....40}=\dfrac{1}{2^{20}}\)
b) \(\dfrac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\dfrac{1}{2^n}\) với \(n\in\) N*
a) Vế trái \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)
\(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)
b) Vế trái
\(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)
a) Với \(n\in N\). Chứng minh:
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
b) Cho a,b,c > 0. Chứng minh:
+) Nếu \(a+b+c=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì a = b = c.
+) \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\).
a) CM:\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
\(\Leftrightarrow n+1+n=\left(n+1-n\right)\left(n+1+n\right)\)
\(\Leftrightarrow2n+1=1\left(2n+1\right)\)
\(\Leftrightarrow2n+1=2n+1\)
\(\Rightarrow\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
Câu b) ý 2:
Áp dụng BĐT cô si ta có :
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\\ \dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\\ \dfrac{c}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{c}{b}}\\ \Leftrightarrow2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge2\left(\sqrt{\dfrac{a}{c}}+\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}\right)\\ \Rightarrowđpcm\)
Câu a:
VT=n+1+n=2n+1 (1)
\(VP=n^2+2n+1-n^2=2n+1\) (2)
Từ (1) và (2) => VT=VP =>đpcm
Cho dãy xác định \(\left\{{}\begin{matrix}u\left(1\right)=\dfrac{1}{2}\\u\left(n+1\right)=\dfrac{u\left(n\right)}{n+1}\end{matrix}\right.\)
a, CM : với mọi n thì 0<u(n) và \(\dfrac{u\left(n\right)}{n+1}\)\(\le\dfrac{1}{2}\)
b, Từ đó suy ra limu(n)=0
Cho $a,\,b,\,c$ là các số thực dương thỏa mãn điều kiện $abc\le 1.$ Chứng minh rằng $\dfrac{a\left( 1-{{b}^{3}} \right)}{{{b}^{3}}}+\dfrac{b\left( 1-{{c}^{3}} \right)}{{{c}^{3}}}+\dfrac{c\left( 1-{{a}^{3}} \right)}{{{a}^{3}}}\ge 0$.
Cho 4 số a,b,c,d bất kỳ chứng minh rằng : \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}=< \sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
bài 2
Chứng minh rằng: \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\) Với n là số nguyên
1. Câu hỏi của Trần Huỳnh Thanh Long - Toán lớp 9 - Học toán với OnlineMath
Chứng minh bằng qui nạp
a/ với 2 \(\le n\in Z\). CMR: 2< \(\left(1+\dfrac{1}{n}\right)^n< 3\)
b/ Với x, y > 0 và n \(\in N\)*. CMR : \(\left(x^2+y^2\right)^n\ge2^nx^ny^n+\left(x^n-y^n\right)^2\)
c/ Cho a+b = 2018. CMR : \(a^n+b^n\ge2.1009^n\). với mọi n\(\in\)N*
cho a,b,c >0 thỏa mãn a.b.c=1. chứng minh rằng \(\dfrac{1}{a^3.\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3.\left(a+b\right)}>=\dfrac{3}{2}\)
Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:
\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)
Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)
ai tick cho mik , mik tick lại cho !^__<nhớ giải câu hỏi nhé ! thanks
Chứng minh các mệnh đề sau:
\(a,1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) \(\forall n\in N\) *
\(b,1.2+2.3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\) \(\forall n\in N\) *