Tìm x biết
\(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}\)=0
Tìm x: \(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}=10\)
148-x/25-1 + 169-x/23-2 + 186-x/21-3 + 199-x/19-4
123-x/25 + 123-x/23 + 123-x/21 + 123-x/19 =0
123-x=0 => x=123
\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
\(\left(\frac{148-x}{25}-1\right)+\left(\frac{169-x}{23}-2\right)+\left(\frac{186-x}{21}-3\right)+\left(\frac{199-x}{19}-4\right)=0\)
=> \(\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)
=> \(\left(123-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
=> 123 - x = 0
=> x = 123
duongtiendung vế bên trái có thêm -1,-2,-3,-3 thì bên vế phải ,phải là 0+(-1)+(-2)+(-3)+(-4)
=-10 chứ = 0 sao đc
\(\dfrac{148-x}{25}\) + \(\dfrac{169-x}{23}\) + \(\dfrac{186-x}{21}\) +\(\dfrac{199-x}{19}\) =10
\(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}=10\)
\(\Leftrightarrow\left(\dfrac{148-x}{25}-1\right)+\left(\dfrac{169-x}{23}-2\right)+\left(\dfrac{186-x}{21}-3\right)+\left(\dfrac{199-x}{19}-4\right)=0\)
\(\Leftrightarrow\dfrac{123-x}{25}+\dfrac{123-x}{23}+\dfrac{123-x}{21}+\dfrac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right)\left(\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}+\dfrac{1}{19}\right)=0\)
\(\Leftrightarrow123-x=0\Leftrightarrow x=123\)
Vậy x = 123
I : Giải các phương trình
a) \(\dfrac{x-2}{2000}+\dfrac{x-3}{1999}=\dfrac{x-4}{1998}+\dfrac{x-5}{1997}\)
b) \(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}=10\)
c) \(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\)
help me
\(a.\dfrac{x-2}{2000}+\dfrac{x-3}{1999}=\dfrac{x-4}{1998}+\dfrac{x-5}{1997}\\ \Leftrightarrow\dfrac{x-2}{2000}-1+\dfrac{x-3}{1999}-1=\dfrac{x-4}{1998}-1+\dfrac{x-5}{1997}-1\\ \Leftrightarrow\dfrac{x-2}{2000}-\dfrac{2000}{2000}+\dfrac{x-3}{1999}-\dfrac{1999}{1999}=\dfrac{x-4}{1998}-\dfrac{1998}{1998}+\dfrac{x-5}{1997}-\dfrac{1997}{1997}\\ \Leftrightarrow\dfrac{x-2002}{2000}+\dfrac{x-2002}{1999}=\dfrac{x-2002}{1998}+\dfrac{x-2002}{1997}\\ \Leftrightarrow\dfrac{x-2002}{2000}+\dfrac{x-2002}{1999}-\dfrac{x-2002}{1998}-\dfrac{x-2002}{1997}=0\\ \Leftrightarrow\left(x-2002\right)\left(\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\right)=0\\ \)
\(Do:\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\ne0\\ \Rightarrow x-2002=0\\ \Leftrightarrow x=2002\\ Vậy:S=\left\{2002\right\}\)
Mấy câu khác tương tự :v
b: \(\Leftrightarrow\left(\dfrac{148-x}{25}-1\right)+\left(\dfrac{169-x}{23}-2\right)+\left(\dfrac{186-x}{21}-3\right)+\left(\dfrac{199-x}{19}-4\right)=0\)
=>123-x=0
=>x=123
c: \(\Leftrightarrow\dfrac{x-2}{2017}+1=\dfrac{x-1}{2018}+\dfrac{x}{2019}\)
\(\Leftrightarrow\left(\dfrac{x-2}{2017}-1\right)=\left(\dfrac{x-1}{2018}-1\right)+\left(\dfrac{x}{2019}-1\right)\)
=>x-2019=0
=>x=2019
Giải phương trình:
a) \(\dfrac{15x}{4x^2+3x-4}\)\(-\)1=12(\(\dfrac{1}{x+4}\)+\(\dfrac{1}{3x-3}\))
b) \(\dfrac{148-x}{25}\)+\(\dfrac{169-x}{23}\)+\(\dfrac{186-x}{21}\)+\(\dfrac{199-x}{19}\)=0
c) ||x\(-\)2|+3|=5
c: =>|x-2|+3=-5 hoặc |x-2|+3=5
=>|x-2|=2
=>x-2=2 hoặc x-2=-2
=>x=4 hoặc x=0
\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=0\) giải phương trình
Bạn xem lại có sai đề ko,mk thấy sao sao ý
Sửa đề:
\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\\\Leftrightarrow \frac{148-x}{25}-1+\frac{169-x}{23}-2+\frac{186-x}{21}-3+\frac{199-x}{19}-4=0\\ \Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\\ \Leftrightarrow\left(123-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\\ \Leftrightarrow123-x=0\left(Vi\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\ne0\right)\\ \Leftrightarrow x=123\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{123\right\}\)
=10 chứ ko phải bằng 0 nha bạn
Bài 1: Cho biểu thức Q= \(\left(\dfrac{2x-x^2}{2x^2+8}-\dfrac{2x^2}{x^3-2x^2+4x-8}\right)x\left(\dfrac{2}{x^2}+\dfrac{1-x}{x}\right)\)
a) Rút gọn Q
b) Tìm x thuộc Z để Q có giá trị nguyên
Bài 2: Giải các phương trình sau:
a) \(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}=4\)
b)\(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}=10\)
Bài 3:
a) Cho a,b,c > 0 cm rằng:
\(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
b) Chờ x,y,z > 0 tìm min của biểu thức:
P=\(\dfrac{x}{y+z}+\dfrac{y}{y+x}+\dfrac{z}{x +y}\)
Giúp mình vs nha các bạn ^.^ thanks mn!!
Bải 3a
\(\dfrac{-a+b+c}{2a}+\dfrac{-b+c+a}{2b}+\dfrac{-c+a+b}{2c}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{-a}{2a}+\dfrac{b+c}{2a}+\dfrac{-b}{2b}+\dfrac{c+a}{2b}+\dfrac{-c}{2c}+\dfrac{a+b}{2c}\ge\dfrac{3}{2}\)
\(\Leftrightarrow-\dfrac{3}{2}+\dfrac{b+c}{2a}+\dfrac{c+a}{2b}+\dfrac{a+b}{2c}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{b+c}{2a}+\dfrac{c+a}{2b}+\dfrac{a+b}{2c}\ge3\)
\(\Leftrightarrow\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\ge6\)
\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\\\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\\\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{ca}{ac}}=2\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge2+2+2=6\)
\(\Leftrightarrow\dfrac{-a+b+c}{2a}+\dfrac{-b+c+a}{2b}+\dfrac{-c+a+b}{2c}\ge\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
Bài 3b)
\(P=\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
\(P=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\)( 1 )
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\)\(\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
\(\Leftrightarrow P\ge\dfrac{3}{2}\)
Vậy \(P_{min}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(a=b=c\)
Bài 2:
a) \(\dfrac{x-17}{33}+\dfrac{x-21}{29}+\dfrac{x}{25}=4\)
\(\Rightarrow\left(\dfrac{x-17}{33}-1\right)+\left(\dfrac{x-21}{29}-1\right)+\left(\dfrac{x}{25}-2\right)=0\)
\(\Rightarrow\dfrac{x-50}{33}+\dfrac{x-50}{29}+\dfrac{x-50}{25}=0\)
\(\Rightarrow\left(x-50\right)\left(\dfrac{1}{33}+\dfrac{1}{29}+\dfrac{1}{25}\right)=0\)
Mà \(\dfrac{1}{33}+\dfrac{1}{29}+\dfrac{1}{25}\ne0\)
\(\Rightarrow x-50=0\)
\(\Rightarrow x=50\)
Vậy x = 50
148-x/25-169-x/23+186-x/4+199-x/19=10.tìm x
Tìm x:
(148-x)/25+(169-x/23+(186-x)/21+(199-x)/10=10
148-x/29+169-x/23+186-x/21+199-x/19=10