Áp dụng tính: \(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
Help Me!!
Tìm x biết
\(\dfrac{x-1}{12}+\dfrac{x-1}{20}+\dfrac{x-1}{30}+\dfrac{x-1}{42}+\dfrac{x-1}{56}+\dfrac{x-1}{72}=\dfrac{16}{9}\)
Help me!! Mk đang cần gấp
ta có
x-1/12+x-1/20+x-1/30+x-1/42+x-1/56+x-1/72=16/9
=>x-1(1/12+1/20+1/30+1/42+1/56+1/72)=16/9
=>x-1(1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9)=16/9
=>x-1(1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9)=16/9
=>x-1*(1/3-1/9)=16/9
=>(x-1)*2/9=16/9
=>x-1=9
=>x=8
kb và like cho mình nhé
Tính:
\(E=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
E =16+112+120+130+142+156
E=\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
E=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{1}-...+\dfrac{1}{7}-\dfrac{1}{8}\)
E=\(\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
3.Tính tổng
D=\(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) +\(\dfrac{1}{42}\) + \(\dfrac{1}{56}\)
`D = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56`
`= 1/(2.3) + 1/(3.4) + 1/(4.5) + 1/(5.6) + 1/(6.7) + 1/(7.8)`
`= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8`
`= 1/2 - 1/8`
`= 3/8`
Tính: \(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(A=1-\dfrac{1}{8}=\dfrac{7}{8}\)
\(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(A=\dfrac{367}{420}\approx0,87\)
A = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9
= 1/1 − 1/2 + 1/2 − 1/3 + 1/3 − 1/4 + 1/4 − 1/5 + 1/5 − 1/6 + 1/6 − 1/7 + 1/7 − 1/8 + 1/8 − 1/9
= 1 − 1/9
= 8/9
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\).Tính
ok luôn.hay thì like nha
ta có
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
=1/1*2+1/2*3+1/3*4+...+1/8*9
=1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9
=1-1/9
=8/9
Tính nhanh
\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{132}\)
=
A = \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\) + \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\)
A = \(\dfrac{1}{4\times5}\) + \(\dfrac{1}{5\times6}\) + \(\dfrac{1}{6\times7}\)+ \(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+ \(\dfrac{1}{9\times10}\) + \(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)
A = \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\) +\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\) +.....+\(\dfrac{1}{11}\) - \(\dfrac{1}{12}\)
A = \(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)
A = \(\dfrac{1}{6}\)
Tính các tổng bằng cách nhanh nhất
a,\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\\ =\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\\ =\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\\ =\dfrac{1}{3}-\dfrac{1}{9}\\ =\dfrac{2}{9}\)
\(a,\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)
\(=\dfrac{1}{212}\)
a) \(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)
\(=\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{8.9}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{3}-\dfrac{1}{9}=\dfrac{2}{9}\)
tính hợp lí:
\(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}=\dfrac{8}{9}-\left(\dfrac{1}{8.9}+\dfrac{1}{7.8}+\dfrac{1}{6.7}+\dfrac{1}{5.6}+\dfrac{1}{4.5}+\dfrac{1}{3.4}+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)=\dfrac{8}{9}-\left(\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{2}-\dfrac{1}{3}+1-\dfrac{1}{2}\right)=\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)=\dfrac{8}{9}-\dfrac{8}{9}=0\)
Không quy đồng hãy tính tổng sau: A=\(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
A=(-1/4.5)+(-1/5.6)+(-1/6.7)+(-1/7.8)+(-1/8x9)+(-1/9.10)
A=(-1/4)-(-1/5)+(-1/5)-(-1/6)+(-1/6)-(-1/7)+(-1/7)-(-1/8)+(-1/8)-(-1/9)-(-1/9)+(-1/10)
A=(-1/4)-(-1/10)
A=-1/4+1/10
A=-3/20