Cho \(P_{\left(x\right)}=ax^3+bx^2+cx+d\) \(⋮\) \(5\) \(\forall\) \(x\in Z\)
Chứng minh : \(a;b;c;d⋮5\)
Cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\)có các hệ số \(a,b,c,d\in Z\)
Biết rằng: \(P\left(x\right)⋮5\left(\forall x\right)\) Chứng minh rằng: \(a,b,c,d⋮5\)
Cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\). Biết rằng \(P\left(x\right)⋮5\forall x\in Z\). CMR: a, b, c, d đều chia hết cho 5.
Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi
Cho P(x) =\(ax^2+bx+c\)( a,b,c ) là các số nguyên . Chứng minh rằng tồn tại \(k\in Z\)sao cho P(k) = \(P_{\left(2021\right)}\cdot P_{2022}\)
Đề sai. Bạn cho $a=-1; b=2021; c=2$ thì để có đpcm thì pt:
$-x^2+2021x+2=P(2021)P(2022)=-4020$ có nghiệm nguyên.
Mà dễ thấy pt này không có nghiệm nguyên nên đề sai.
cho \(f\left(x\right)=ax^2+bx+c\) thỏa mãn |f(x)| ≤ 1 \(\forall x\in\left[-1;1\right]\). Chứng minh rằng \(\left|a\right|+\left|b\right|+\left|c\right|\le4\)
Lời giải:Đặt $A=f(1)=a+b+c; B=f(-1)=a-b+c; C=f(0)=c$
Theo đề bài: $|A|, |B|, |C|\leq 1$
\(|a|+|b|+|c|=|\frac{A+B}{2}-C|+|\frac{A-B}{2}|+|C|\)
\(\leq |\frac{A+B}{2}|+|-C|+|\frac{A-B}{2}|+|C|=|\frac{A}{2}|+|\frac{B}{2}|+|C|+|\frac{A}{2}|+|\frac{-B}{2}|+|C|\)
\(=|A|+|B|+2|C|\leq 1+1+2=4\) (đpcm)
Cho đa thức : A(x) = ax3 + bx2 + cx + d biết \(A\left(x\right)\inℤ\forall x\)
Chứng minh 6a, 2b, a + b +c, d là các số nguyên.
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) với \(a,b,c\in Z\) biết đa thức \(⋮5\) với \(\forall x\in Z\). Chứng minh \(a,b,c⋮5\)
\(\left\{{}\begin{matrix}f\left(0\right)⋮5\Rightarrow c⋮5\\f\left(1\right)⋮5\Rightarrow\left(a+b+c\right)⋮5\\f\left(-1\right)⋮5\Rightarrow\left(a-b+c\right)⋮5\\\left[\left(a+b+c\right)+\left(a-b+c\right)\right]=2\left(a+c\right)⋮5\Rightarrow a⋮5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c⋮5\\a⋮5\\b⋮5\end{matrix}\right.\)+> dpcm
Tìm hệ số a,b,c biết
a, \(-3x^2\left(2ax^2-bx+c\right)=6x^5+9x^4-3c^2\forall x\)
b,\(\left(x^2+cx+2\right)\left(a+b\right)=x^3+x^2-2\forall x\)
c,\(\left(ax^2+bx+c\right)+\left(x+3\right)=x^2+2x-3x\forall x\)
Help me!!
Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) . Biết \(f\left(x\right)=0\) với mọi giá trị của \(x\). Chứng minh \(a=b=c=d=0\)
Giúp e với ạ :<
Ta có:
\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)
\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)
Đề hình như sai
Cho a=1, b=2, c=3, d=0, x=0 có đúng đâu nhỉ
cho \(A\left(x\right)=ax^3+bx^2+cx+d\)và -a+b-c+d=0
chứng minh A(x) chia hết cho x
chia hết cho x+1 nha mn
Theo định lý Bézout thì số dư khi chia đa thức A(x) cho nhị thức x + 1 là: \(r=A\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d=0\)
Vậy A(x) chia hết cho x + 1 (đpcm)