Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi
Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi
Cho đa thức \(p\left(x\right)=ax^3+bx^2+cx+d\) với a, b, c, d là các hệ số nguyên. Biết rằng, p(x)\(⋮\) 5 với mọi x nguyên. CMR a, b, c, d đều chia hết cho 5.
cho \(P\left(x\right)=ax^2+bx^2+cx+d\)
với a,b,c,d là các số nguyên .Biết rằng giá trị của đa thức chia hết cho 5 với mọi giá trị nguyên của x.Chứng minh rằnga,b,c,d đều chia hết cho 5
Cho \(P_{\left(x\right)}=ax^3+bx^2+cx+d\) \(⋮\) \(5\) \(\forall\) \(x\in Z\)
Chứng minh : \(a;b;c;d⋮5\)
Bài 1: Cho \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\) và \(2x^3-1=15\)
Tính A= x + y + z
Bài 2: a) Tìm x, y biết: \(x\left(x-y\right)=\dfrac{3}{10}\) và \(y\left(x-y\right)=-\dfrac{3}{50}\)
b) Tìm x biết: \(\left(x-3\right)\left(x+\dfrac{1}{2}\right)>0\)
Bài 3: a) Tìm số tự nhiên n để phân số \(\dfrac{7n-8}{2n-3}\) có giá trị lớn nhất.
b) Cho đa thức P(x)= \(ax^3+bx^2+cx+d\) với a, b, c, d là cáca hệ số nguyên. Biết rằng, P(x) chia hết cho 5 với mọi x nguyên. chứng minh a,b,c,d đều chia hết cho 5
c) Gọi a,b,c là độ dài các cạnh của tam giác. CMR: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
1. Cho \(f\left(x\right)=1+x^3+x^5+x^7+...+x^{101}\). Tính f(1); f(-1)( Câu này dễ nhất nè )
2. Tìm các số nguyên x, y, z, t thỏa mãn :
\(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|=2015\)
3. Cho 2 đa thức sau : \(f\left(x\right)=\left(x-1\right)\left(x+2\right);g\left(x\right)=x^3+ax^2+bx+2\)
Xác định a & b biết nghiệm đa thức f(x) cũng là nghiệm của g(x)
4. Tìm \(n\in Z\) sao cho \(2n-3⋮n+1\)
5. Cho đa thức : \(f\left(x\right)=ax^2+bx+c\). Biết rằng các giá trị của đa thức tại x = 0,
x = 1, x = -1 đều là những số nguyên. Chứng tỏ 2a, a+b, c là những số nguyên.
p/s: đề dài dài, chịu khó một tí nha mấy bạn, bạn nào làm đc câu nào thì làm nha, làm hết thì càng tốt
Bài 1: Cho \(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25},2x^3-1=15\)
Tính A= x+y+z
Bài 2: a) Tìm số tự nhiên n để phân số \(\dfrac{7n-8}{2n-3}\) có giá trị lớn nhất
b) Cho đa thức P(x)= \(ãx^3+bx^3+cx+d\) với a, b, c, d là các hệ số nguyên. Biết rằng, P(x) chia hết cho 5 với mọi x nguyên. CMR a,b,c,d đều chia hết cho 5.
c) Gọi a,b,c là đọ dài các cạnh của tam giác. CMR: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
Bài 3: a) Tìm x, y biết \(x\left(x-y\right)=\dfrac{3}{10}\) và \(y\left(x-y\right)=-\dfrac{3}{50}\)
b) Tìm x, biết: \(\left(x-3\right)\left(x+\dfrac{1}{2}\right)>0\)
Cho \(f\left(x\right)=ax^3+bx^2+cx+d\) trong đó \(a,b,c,d\in Z\) thoả mãn \(b=3a+c\) . CMR: f(1) . f(-2) là số chính phương
cho đa thức \(f_{\left(x\right)}=ax^2+bx+c\) ,biết rằng \(29a+2c=3b\) .
Chứng minh rằng : \(f_{\left(2\right)}.f_{\left(-5\right)}\le0\)
Biet F(x) = ax2+bx2+cx+d chia hết cho 5 với mọi x nguyên (a;b;c;d nguyên)
C/m a;b;c;d đều chia hết cho 5