Vì \(P_{\left(x\right)}=ax^3+bx^2+cx+d⋮5\) với \(\forall x\in Z\) nên ta có:
+) \(P_{\left(0\right)}⋮5\Rightarrow a.0^3+b.0^2+c.0+d⋮5\Rightarrow d⋮5\)
+) \(P_{\left(1\right)}⋮5\Rightarrow a.1^3+b.1^2+c.1+d⋮5\Rightarrow a+b+c+d⋮5\). Mà \(d⋮5\Rightarrow a+b+c⋮5\) (1)
+) \(P_{\left(-1\right)}⋮5\Rightarrow a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d⋮5\)
\(\Rightarrow-a+b-c+d⋮5\Rightarrow-a+b-c⋮5\) (do \(d⋮5\)) (2)
+) Từ (1) và (2) \(\Rightarrow a+b+c-a+b-c⋮5\Rightarrow2b⋮5\Rightarrow b⋮5\)
+) Do \(a+b+c+d⋮5\) mà \(b,d⋮5\Rightarrow a+c⋮5\Rightarrow2a+2c⋮5\)
+) \(P_{\left(2\right)}⋮5\Rightarrow8a+4b+2c+d⋮5\Rightarrow8a+2c⋮5\Rightarrow8a+2c+2a+2c⋮5\)
\(\Rightarrow10a+4c⋮5\). Mà \(10a⋮5\Rightarrow4c⋮5\Rightarrow c⋮5\). Do \(a+c⋮5\Rightarrow a⋮5\)
Vậy \(a,b,c,d⋮5\)
Câu này y hệt hồi lớp 7 bọn tui thi nè
=====================
+ Xét x = 0 => P(0) = d \(⋮5\)
+ Xét x = 1 => \(P_{\left(1\right)}=\)\(\left(a+b+c+d\right)⋮5\Rightarrow a+b+c⋮5\) (1)
+ Xét x = -1 => P(-1) = \(\left[\left(-a\right)+b+\left(-c\right)+d\right]⋮5\Rightarrow\left[\left(-a\right)+b+\left(-c\right)\right]⋮5\)(2)
Ta có (1) + (2) = \(2b⋮5\) mà (2,5 ) = 1 => b chia hết cho 5
+ Xét P(2) = (8a + 4b+2c+d ) \(⋮5\) => (8a + 2c) \(⋮5\)
<=> 6a + 2a + 2c = 6a+2(a+c) chia hết cho 5
Mà a+b+c chia hết cho 5 ( do d chia hết cho 5 ) , b chia hết cho 5
=> a+c chia hết cho 5
=> 2(a+c) chia hết cho 5
=> 6a chia hết cho 5 mà (6,5)=1
=> a chia hết cho 5
Vì a+ c chia hết cho 5 , a chia hết cho 5 => c chia hết cho 5
Vậy .......