Đề sai. Bạn cho $a=-1; b=2021; c=2$ thì để có đpcm thì pt:
$-x^2+2021x+2=P(2021)P(2022)=-4020$ có nghiệm nguyên.
Mà dễ thấy pt này không có nghiệm nguyên nên đề sai.
Đề sai. Bạn cho $a=-1; b=2021; c=2$ thì để có đpcm thì pt:
$-x^2+2021x+2=P(2021)P(2022)=-4020$ có nghiệm nguyên.
Mà dễ thấy pt này không có nghiệm nguyên nên đề sai.
Cho đa thức \(P\left(x\right)\) có bậc là 2021 thỏa mãn: \(P\left(k\right)=\dfrac{1}{k+1}\).
Với mọi \(k=1;2;3;4;5;6;7;.....;2022.\)
Tính giá trị của biểu thức \(P\left(2023\right)=?\)
P/s: Em xin phép nhờ quý thầy cô giáo cùng các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
Cho P(x) là đa thức hệ số nguyên thỏa mãn \(P\left(a\right)=P\left(b\right)=P\left(c\right)=P\left(d\right)=7\)
và a, b ,c ,d là các số nguyên phân biệt . Chứng minh \(P\left(x\right)-14\)
không có nghiệm nguyên
Xét các số thực a,b,c với \(b\ne a+c\) sao cho PT bậc 2 \(ax^2+bx+c=0\) có 2 nghiệm thực m,n thỏa mãn \(0\le m,n\le1\). Tìm GTLN và GTNN của biểu thức
\(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)
Cho đa thức \(f\left(x\right)\) có bậc 3 và hệ số cao nhất bằng 2 thỏa mãn :\(f\left(2020\right)=2021\) và \(f\left(2021\right)=2022\). Tính giá trị của \(f\left(2022\right)-f\left(2019\right)=?\).
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em tham khảo với ạ.
Em cám ơn nhiều lắm ạ!
Cho tam thức bậc hai \(f\left(x\right)=x^2+bx+c\). Giả sử phương trình \(f\left(x\right)=x\) có \(2\) nghiệm phân biệt. Chứng minh rằng nếu \(\left(b+1\right)^2>4\left(b+c+1\right)\) thì phương trình \(f\left(f\left(x\right)\right)=x\) có \(4\) nghiệm phân biệt.
Cho ba số nguyên dương a; b và c thỏa mãn (a; b;c) =1 và \(a^2+4b^2+4c^2+7bc=4a.\left(b+c\right)\).
Chứng minh rằng b , c là các số chính phương.
P/s: Nhờ quý thầy cô hỗ trợ và giúp đỡ với ạ! cám ơn nhiều lắm ạ
Cho \(x+y=2\) và hằng số \(k\in Z^+\)
CMR: \(x^ky^k\left(x^k+y^k\right)\le2\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2+z^2=xy+yz+xz\\x^{2021}+y^{2021}+z^{2021}=3^{2022}\end{matrix}\right.\)
Cho `s(s>=3;s\inNN)` số tự nhiên `j` phân biệt `j_1;j_2;...;j_n.`
Chứng minh rằng luôn tồn tại `j_i|\sum_{k=1}^{n} (j_k)` với `i\in{1;2;3;...;n}`