Bài 1:
Giải hệ phương trình: \(\left\{{}\begin{matrix}xy+2=2x+y\\2xy+y^2+3y=6\end{matrix}\right.\)
Bài 2:
cho đa thức: \(f\left(x\right)=x^4+6x^3+11x^2+6x\)
a, Phân tích f(x) thành phân tử
b, chứng minh rằng với mọi giá trị nguyên của x thì f(x)+1 luôn có giá trị là số chính phương
Câu 5:
Cho đường tròn (O), đường dính AB cố định. Điểm I nằm giữa A và O sao cho AI=\(\dfrac{2}{3}\) AO. Kẻ dây MN vuông góc với AB tại I. gọi C là một điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E
a, Chứng minh tứ giác IECB nội tiếp
b, Chứng minh AM\(^2\)=AE.AC
c, Chứng minh AE.AC-AI.BI=AI\(^2\)
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU!!
cho phương trình \(\left(m+1\right)x^2-2\left(m+1\right)x+m-3=0\)
a, giải phương trình khi m = 3
b, tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\)thoả mãn \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)
Cho phương trình: \(x^2+2\left(m+1\right)x-8=0\left(1\right)\). Tìm \(m\) để phương trình có 2 nghiệm phân biệt thỏa mãn: \(x_1^2=x_2\)
Cho phương trình bậc 2 ẩn số x:
\(x^2-2\left(m+1\right)x+m-4=0\) (1)
a.Giải phương trình (1) khi m = -5
b.Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1;x2 với mọi giá trị m
\(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)
a. Chứng minh phương trình luôn có 2 nghiệm phân biệt
b.Tìm k để phương trình có 2 nghiệm x1,x2. Thỏa mãn \(|x_1|+|x_2|=4\)
Bài 2. (2,0 điểm)
Cho phương trình \(x^2+2\left(m+1\right)x+m-4\) (m là tham số).
a. Giải phương trình khi m = -5 .
b. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m.
c. Tìm m sao cho phương trình đã cho có hai nghiêm \(x_1;x_2\) thỏa mãn hệ thức \(x_1^2+x_2^2+3x_1x_2=0\)
Cho đa thức :\(P\left(x\right)=x^3-3x^2+1\) có 3 nghiệm thực phân biệt là :\(a;b;c\). Tính giá trị của các biểu thức sau :
a) \(A=a^4+b^4+c^4\)
b) \(B=\dfrac{a+1}{\left(b+c\right).\left(1-a\right)+1}+\dfrac{b+1}{\left(c+a\right).\left(1-b\right)+1}+\dfrac{c+1}{\left(a+b\right).\left(1-c\right)+1}\)
c) \(C=\dfrac{a^3}{a^2+2.b.c}+\dfrac{b^3}{b^2+2ac}+\dfrac{c^3}{c^2+2ab}\)
P/s: Em xin phép nhờ quý thầy, quý cô cùng các bạn yêu toán vui lòng giúp đỡ em tham khảo với ạ. Em cám ơn nhiều lắm ạ!
Cho phương trình \(x^2-2\left(m-1\right)x+m-3=0\). Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m
Cho phương trình \(x^2-2\left(m+1\right)+2m-3=0\)
Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt thoản mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\)
đạt GTNN