Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Triệu Việt Hà (Vịt)

Bài 1:

Giải hệ phương trình: \(\left\{{}\begin{matrix}xy+2=2x+y\\2xy+y^2+3y=6\end{matrix}\right.\)

Bài 2:

cho đa thức: \(f\left(x\right)=x^4+6x^3+11x^2+6x\)

a, Phân tích f(x) thành phân tử

b, chứng minh rằng với mọi giá trị nguyên của x thì f(x)+1 luôn có giá trị là số chính phương

Câu 5:

Cho đường tròn (O), đường dính AB cố định. Điểm I nằm giữa A và O sao cho AI=\(\dfrac{2}{3}\) AO. Kẻ dây MN vuông góc với AB tại I. gọi C là một điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E

a, Chứng minh tứ giác IECB nội tiếp

b, Chứng minh AM\(^2\)=AE.AC

c, Chứng minh AE.AC-AI.BI=AI\(^2\)

GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU!!

Nguyễn Văn A
22 tháng 12 2022 lúc 21:51

Bài 1:

\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow xy-y+2-2x=0\)

\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Với \(x=1\). Thay vào (2) ta được:

\(2y+y^2+3y=6\)

\(\Leftrightarrow y^2+5y-6=0\)

\(\Leftrightarrow y^2+y-6y-6=0\)

\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)

Với \(y=2\). Thay vào (2) ta được:

\(2x.2+2^2+3.2=6\)

\(\Leftrightarrow4x+4+6=6\)

\(\Leftrightarrow x=-1\)

Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)

Nguyễn Văn A
22 tháng 12 2022 lúc 21:55

Bài 2:

\(f\left(x\right)=x^4+6x^3+11x^2+6x\)

\(=x\left(x^3+6x^2+11x+6\right)\)

\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)

\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)

\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.


Các câu hỏi tương tự
Huy Nguyen
Xem chi tiết
Nguyễn Hồng Ngọc
Xem chi tiết
2moro
Xem chi tiết
Minh Ngọc
Xem chi tiết
Huyền Thương
Xem chi tiết
Qynh Nqa
Xem chi tiết
????????????????
Xem chi tiết
Aurora
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết