Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Việt Hà

Cho P(x) là đa thức hệ số nguyên thỏa mãn \(P\left(a\right)=P\left(b\right)=P\left(c\right)=P\left(d\right)=7\)

và a, b ,c ,d là các số nguyên phân biệt . Chứng minh \(P\left(x\right)-14\)

không có nghiệm nguyên

 

Nguyễn Việt Lâm
25 tháng 3 2021 lúc 18:18

Do \(P\left(a\right)=P\left(b\right)=P\left(c\right)=P\left(d\right)=7\) nên \(P\left(x\right)-7=0\) có 4 nghiệm nguyên phân biệt

\(\Rightarrow P\left(x\right)-7=\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)\) với Q(x) là đa thức có giá trị nguyên khi x nguyên

Xét phương trình: \(P\left(x\right)-14=0\)

\(\Leftrightarrow P\left(x\right)-7=7\)

\(\Leftrightarrow\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)=7\) (1)

Do a;b;c;d phân biệt \(\Rightarrow\) vế trái là tích của ít nhất 4 số nguyên phân biệt khi x nguyên

Mà 7 là số nguyên tố nên chỉ có thể phân tích thành tích của 2 số nguyên phân biệt

\(\Rightarrow\) Không tồn tại x nguyên thỏa mãn (1) hay \(P\left(x\right)-14=0\) ko có nghiệm nguyên


Các câu hỏi tương tự
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Huy Nguyen
Xem chi tiết
Phan PT
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
hilo
Xem chi tiết
Tô Mì
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết