Chứng minh rằng với mọi số nguyên dương \(n\) thì \(n^4+4.n^3+7.n^2+6n+3\) luôn luôn không là số lập phương .
P/s: em in phép nhờ quý thầy cô giáo và các bạn trong nhóm hỗ trợ và giúp đỡ em tham khảo với ạ, em cám ơn nhiều ạ!
Chứng minh rằng tồn tại một số tự nhiên khi biểu diễn thập phân chỉ toàn chữ số 1 và chia hết cho 2011.
Chứng minh rằng với mọi số nguyên dương n mà \(n\equiv1\) ( mod 4) thì
\(\dfrac{n.\left(n+1\right)\left(n+3\right)\left(n+5\right)}{2}=P\) luôn luôn không thể là số lập phương
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn gợi ý giúp đỡ với ạ, em cám ơn nhiều ạ!
Chứng minh rằng với mọi số nguyên dương n thì \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\) luôn luôn không thể là số lập phương.
P/S: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán hỗ trợ giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Cho hàm số y= -x2 có đồ thị (P) và đường thẳng (d) có hệ số góc k≠0 đi qua điểm I (0;-1).Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt A và B
Cho dãy số thực dương (xn). Chứng minh rằng tồn tại vô số số nguyên dương n thỏa mãn \(1+x_n>\sqrt[n]{2}x_{n-1}\).
Cho P(x) =\(ax^2+bx+c\)( a,b,c ) là các số nguyên . Chứng minh rằng tồn tại \(k\in Z\)sao cho P(k) = \(P_{\left(2021\right)}\cdot P_{2022}\)
Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Ba đường cao AD, BE, CF cắt nhau tại H. Các tiếp tuyến tại B và C cắt nhau tại S. Nối EF cắt SB tại I cắt OA tại K. Gọi M là trung điểm BC.
a. Chứng minh rằng: SBOC nội tiếp.
b. Chứng minh rằng: IB = IF.
c. Chứng minh rằng: EF. CD = KF. BC
Cho ( P ) y = x2 và đường thẳng d y = ( 2m - 1) x - m + 2
a, Chứng minh rằng với moijm đường thẳng d luôn cắt ( P ) tại 2 điểm phân biệt
b, Tìm các ía trị của m đề dường thẳng d luôn cắt ( P ) tại hai điểm phân biệt A ( x1 ; y1 ) và B ( x2 ; y2 ) thỏa mãn x1y1 + x2y2 =0