Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x^2 và đường thẳng d: y=2x+|m|+ 1 ( m là tham số ). a) Chứng minh đường thẳng ở luôn cắt (P) tại 2 điểm phân biệt. b) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1 x2
Trên mặt phẳng Oxy, cho đường thẳng (d): y = -4 + m2 - 2 và parabol (P): y = x2
a) Chứng minh đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt với mọi m
b) Gọi x1, x2 là hoành độ hai giao điểm của (d) và (P). Tìm m để x1 ≤ 0 < x2
cho HS y = 1/2 x^2 ( P )
a ) vẽ ( P )
b ) CM : đường thẳng ( d ) : y= mx-m+1 luôn cắt ( P ) tại 2 điểm phân biệt A (x1;y1) , B (x2;y2) . Tính y1+y2 theo m .
Cho parabol (P): y= -x2 và đường thẳng (d): y = mx -1
a) Chứng minh rằng với mọi m thì (d) luôn cắt (P) tại 2 điểm phân biệt.
b) Gọi x1; x2 lần lượt là hoành độ các giao điểm của đường thẳng (d) và parabol (P). Tìm giá trị của m để \(x_1^2x_2+x_2^2x_1-x_1x_2=3\)
a) Tìm các giá trị tham số m để phương trình x2 – (2m – 3)x + m(m – 3) = 0 có 2 nghiêm phân biệt x1; x2 thỏa mãn điều kiện 2x1 – x2 = 4
b) Cho Parabol (P): \(y=-3x^2\) và đường thẳng (d): \(y=2x-m+9\) .Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
Cho Pharabol ( P ) : y = x2 và đường thẳng ( d ) : y = - 2ax - 4a ( với a là tham số )
Tìm tất cả các giá trị của a để đường thẳng ( d ) cắt ( P ) tại 2 điểm phân biệt có hoành độ x1;x2 thỏa mãn / x1 / + / x2 / = 3
Cho parabol (P) y = - x ^ 2 và đường thẳng (d) y = mx - 2 Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn (x_{1} + 2)(x_{2} + 2) = 0
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):\(y=2x-m+1\) (với m là tham số) và parabol (P): .
a) Tìm m để đường thẳng (d) đi qua điểm A (–1; 3).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho \(x_1x_2\left(y_1+y_2\right)+6=0\) .
Cho Parabol (P):y=x2 và đường thẳng (d) có phương trình:y=2(m+1)x-3m+2.
a) Tìm tọa độ giao điểm của (P) và (d) với m=3.
b) Chứng minh (P) và (d) luôn cắt nhau tại 2 điểm phân biệt A, B với mọi m.
(Giúp mình với, mình cảm ơn trước nha)