Amen, thi chuyên Toán mà gặp bài này cũng chịu .-.
Đề chắc thiếu dữ kiện gì đó rồi kiểu như là `x_n=ax_{n-1}` chẳng hạn,cũng có thể thiếu dữ kiện là dãy tăng hay giảm gì đó
Amen, thi chuyên Toán mà gặp bài này cũng chịu .-.
Đề chắc thiếu dữ kiện gì đó rồi kiểu như là `x_n=ax_{n-1}` chẳng hạn,cũng có thể thiếu dữ kiện là dãy tăng hay giảm gì đó
Cho x,y là các số thực dương thỏa mãn x + 3y ≤ 10. Chứng minh rằng \(\dfrac{1}{\sqrt{x}}+\dfrac{27}{\sqrt{3y}}\) ≥ 10
Có tồn tại hay không số nguyên dương \(n\) thỏa mãn điều kiện \(4^n+210\) là tích của không ít hơn hai số nguyên dương liên tiếp?
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em với ạ!
Em cám ơn nhiều ạ!
Cho các số thực dương a,b thỏa mãn a+b = 4ab. Chứng minh rằng:
\(\dfrac{a}{4b^2+1}\)+\(\dfrac{b}{4a^2+1}\)≥\(\dfrac{1}{2}\)
Cho ba số dương a,b,c thỏa mãn abc = 1. Chứng minh rằng :
\(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\) ≤ \(\dfrac{1}{2}\)
Có tồn tại hay không các số nguyên dương \(x;y;n\) với \(n>1\) thỏa mãn điều kiện \(\left(x;n+1\right)=1\) và \(x^n+1=y^{n+1}\) ?
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ em tham khảo với ạ, em cám ơn nhiều ạ!
Cho các số thực dương x, y, z thỏa mãn x+y+z=4 . Chứng minh rằng: \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)
Cho ba số thực dương a,b,c thỏa mãn abc = 1. Chứng minh rằng
\(\left(a^2+b^2+c^2\right)^3\) ≥ 9(a + b + c)
Cho hai số nguyên dương \(a;b\) với \(b>1\) và thỏa mãn điều kiện \(A=\dfrac{a^2}{2.a.b^2-b^3+1}\) là số nguyên dương. Chứng minh rằng \(A\) là số chính phương.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Cho a,b là hai số thực dương thỏa mãn điều kiện \(a+b^2=2ab^2\) . Chứng minh rằng
\(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^8+2a^2b^2}\) ≥ \(\dfrac{1}{2}\)