1, với giá trị nào của k thì pt x-ky=-1 nhận cặp số (1;2) làm nghiệm?
a, k=2 b, k=1 c, k=-1 d, k=0
2, cặp số (x0; y0) là nghiệm của hệ pt \(\left\{{}\begin{matrix}x-y=-2\\x=1\end{matrix}\right.\) giá trị biểu thức \(x^2_0+y_0\) bằng
a, 4 b,5 c, 10 d, 7
3, hàm số y=5x2 nghịch biến khi
a, x>0 b, x<0 c, x\(\in\)R d, x≠0
4, tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O biết sđ \(\stackrel\frown{AC}\)\(=80^o\) góc \(\widehat{ABC}\) có số đo là
a, 40o b, 80o c, 160o d, 140o
5, cho hàm số y= -2020x2 khẳng định nào sao đây ko đúng
a, hàm số nghịch biến khi x>0
b,đồ thị hàm số nằm ở phía dưới trục hoành
c, điểm O là điểm cao nhất của đồ thị
d, đồ thị hàm hố là một đường thẳng
6, cho hàm số y=f (x)=x2 giá trị của f(5) bằng
a, 10 b, -25 c, 25 d, -10
7, điểm M (-1;1) thuộc đồ thị hàm số y=(a-1)x2 khi a bằng
a, 2 b, 1 c, 0 d, -1
8, cho đường tròn tâm O bán kính 6m diện tích của đg tròn là
a, 36\(\pi\) (m2) b, 12\(\pi\) (m) c, 12\(\pi\) (m2) d, 36\(\pi\) (m)
9, phương trình nào sau đây có 2 nghiệm phân biệt
a, x2-x+1=0 b, x2-2x+1=0 c, x2-x-1=0 d, 25x2=0
10, pt 5x2-x-10=0 có toonge 2 nghiệm bằng
a, -1 b, 1 c, \(\dfrac{-1}{5}\) d, \(\dfrac{1}{5}\)
Cho P(x) =\(ax^2+bx+c\)( a,b,c ) là các số nguyên . Chứng minh rằng tồn tại \(k\in Z\)sao cho P(k) = \(P_{\left(2021\right)}\cdot P_{2022}\)
cho x,y,z là 3 số thực tm \(x+y+z=18\sqrt{2}\).
Cmr \(\dfrac{1}{\sqrt{x\left(y+z\right)}}+\dfrac{1}{\sqrt{y\left(z+x\right)}}+\dfrac{1}{\sqrt{z\left(x+y\right)}}+2\ge\dfrac{9}{4}\)
mng tham khảo
với giá trị nào của k thì phương trình \(2x^2+\left(k-9\right)x+k^2+3k+4=0\) có nghiệm kép ( x là ẩn số )
\(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)
a. Chứng minh phương trình luôn có 2 nghiệm phân biệt
b.Tìm k để phương trình có 2 nghiệm x1,x2. Thỏa mãn \(|x_1|+|x_2|=4\)
Các số dương x,y,z thỏa mãn điều kiện : x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức : F = \(\dfrac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Giúp mình với mình cần gấp
Cho đa thức \(P\left(x\right)\) có bậc là 2021 thỏa mãn: \(P\left(k\right)=\dfrac{1}{k+1}\).
Với mọi \(k=1;2;3;4;5;6;7;.....;2022.\)
Tính giá trị của biểu thức \(P\left(2023\right)=?\)
P/s: Em xin phép nhờ quý thầy cô giáo cùng các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
Trong mặt phẳng tọa độ Oxy,đường thẳng y=(m-2)x+k song song với đường thẳng y=5x-1 và đi qua điểm P(2,1).Tìm m và k
Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm GTLN của
\(P=\dfrac{x}{\left(2x+y+z\right)^2}+\dfrac{y}{\left(2y+x+z\right)^2}+\dfrac{z}{\left(2z+y+x\right)^2}\)