Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Kim Oanh

Cho ba số nguyên dương a; b và c thỏa mãn (a; b;c) =1 và \(a^2+4b^2+4c^2+7bc=4a.\left(b+c\right)\).
Chứng minh rằng  b , c là các số chính phương.
P/s: Nhờ quý thầy cô hỗ trợ và giúp đỡ với ạ! cám ơn nhiều lắm ạ

Nguyễn Việt Lâm
13 tháng 2 2022 lúc 17:35

\(a^2+4\left(b+c\right)^2-bc=4a\left(b+c\right)\)

\(\Rightarrow\left[a-2\left(b+c\right)\right]^2=bc\)

Do \(\left(b,c\right)=1\) và \(b.c\) là 1 số chính phương

\(\Rightarrow b,c\) đều là các số chính phương


Các câu hỏi tương tự
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết