\(a^2+4\left(b+c\right)^2-bc=4a\left(b+c\right)\)
\(\Rightarrow\left[a-2\left(b+c\right)\right]^2=bc\)
Do \(\left(b,c\right)=1\) và \(b.c\) là 1 số chính phương
\(\Rightarrow b,c\) đều là các số chính phương
\(a^2+4\left(b+c\right)^2-bc=4a\left(b+c\right)\)
\(\Rightarrow\left[a-2\left(b+c\right)\right]^2=bc\)
Do \(\left(b,c\right)=1\) và \(b.c\) là 1 số chính phương
\(\Rightarrow b,c\) đều là các số chính phương
Chứng minh rằng với mọi số nguyên dương n thì \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\) luôn luôn không thể là số lập phương.
P/S: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán hỗ trợ giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Tìm tất cả các số nguyên dương n thỏa mãn \(3^n+n^2+23\) là số chính phương.
P/s: Em nhờ quý thầy cô giáo và các bạn yêu toán gợi ý , giúp đỡ em tham khảo với ạ
Em cám ơn nhiều lắm ạ!
Cho ba số nguyên \(a;b;c\) thỏa mãn \(a^6+b^6+c^6\) chia hết cho 28. Chứng minh rằng \(a.b.c\) chia hết cho 2744.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán, gợi ý giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Cho ba số nguyên \(a;b;c\) thỏa mãn \(a^6+b^6+c^6\) chia hết cho 28. Chứng minh rằng \(a.b.c\) chia hết cho 2744.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý , giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Tìm tất cả các số nguyên dương ( a, b) thỏa mãn điều kiện
\(\dfrac{a^2+b}{a.b-1}\) là số nguyên dương .
P/s: Em nhờ quý thầy cô giáo gợi ý và giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Cho hai số nguyên dương \(a;b\) với \(b>1\) và thỏa mãn điều kiện \(A=\dfrac{a^2}{2.a.b^2-b^3+1}\) là số nguyên dương. Chứng minh rằng \(A\) là số chính phương.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Tìm ba số nguyên tố \(p;q;r\) thỏa mãn : \(p^2+q^2+r^2=5054\)
P/s: Em nhờ quý thầy cô giáo và các bạn yêu toán hỗ trợ giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Tìm tất cả các số nguyên dương \(n\) thỏa mãn điều kiện sau \(3^n+n^2+23\) là số chính phương.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý , giúp đỡ em với ạ!
Em cám ơn nhiều ạ!
Cho hai số nguyên dương \(a;b\) thỏa mãn điều kiện \(2a+5b\) và \(2b+5a\) đều là số chính phương . Chứng minh rằng cả hai số \(a;b\) cùng chia hết cho 7.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!