Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dream XD
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2021 lúc 16:22

Ta có:

\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)

Áp dụng:

\(C=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+\dfrac{4^2-1}{4^2}+...+\dfrac{100^2-1}{100^2}\)

\(C>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+1-\dfrac{1}{3.4}+...+1-\dfrac{1}{99.100}\)

\(C>99-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(C>99-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(C>99-\left(1-\dfrac{1}{100}\right)\)

\(C>98+\dfrac{1}{100}>98\) (đpcm)

tran thi mai anh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 11 2018 lúc 21:30

Đặt \(A=\dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{9999}{10000}=1-\dfrac{1}{4}+1-\dfrac{1}{9}+...+1-\dfrac{1}{10000}\)

\(=99-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\right)=99-B\)

Do \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>0\Rightarrow99-B< 99\Rightarrow A< 99\)

Do \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}\)

\(\Rightarrow A=99-B>99-\left(1-\dfrac{1}{100}\right)=98+\dfrac{1}{100}>98\)

Vậy \(98< \dfrac{3}{4}+\dfrac{8}{9}+...+\dfrac{9999}{10000}< 99\)

Lê Minh Khánh
Xem chi tiết
Vũ Nguyễn Nam Khánh
20 tháng 4 2023 lúc 9:13

Vũ Nguyễn Nam Khánh
20 tháng 4 2023 lúc 9:13

Tham khảo :
 

=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}

=\dfrac{\left(1.2.3.....99\right)}{\left(2.3.4.....100\right)}.\dfrac{\left(3.4.5.....101\right)}{\left(2.3.4.....100\right)}

=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}
 

Tú Cường Trần
21 tháng 4 2023 lúc 6:08

cộng mà bạn

 

Trần Thị Mỹ Tâm
Xem chi tiết
Nguyễn Quang Ngọc Trác
10 tháng 5 2017 lúc 5:44

C = 3/4 + 8/9 + 15/16 + ... + 9999/10000

C = 1- 1/4 + 1- 1/9 + 1- 1/16 + ... + 1- 1/10000

C = ( 1+1+1+...+1) - (1/2.2 + 1/3.3 + 1/4.4 + ...+ 1/100.100) >

(1+1+1+...+1) - ( 1/1.2+1/2.3+1/3.4+...+1/99.100) = 99 - ( 1/1-1/2+1/2-1/3+1/3+1/4+...+1/9999-1/10000

= 99 - ( 1-1/10000)= 99 - 1 + 1/10000= 98+1/10000 > 98

Vậy C > 98

Đoàn Phương Linh
Xem chi tiết
Anh Thư Trần
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 18:34

\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{99.101}{100^2}\)

\(=\dfrac{1.2...99}{2.3...100}.\dfrac{3.4...101}{2.3...100}=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)

Võ Ngọc Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2023 lúc 0:27

\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)

\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)

Anh Tuấn Đào
Xem chi tiết
diggory ( kẻ lạc lõng )
11 tháng 4 2022 lúc 21:08

= 3/4 . 8/9 . 15/16 . ... . 9999/10000

= 3 . 8 . 15 . ... . 9999/ 4 . 9 . 16 . ... . 10000

= (1 . 3) . (2 . 4) . (3 x 5) . ... . (99 . 101)/ (2 . 2) . (3 . 3) . (4 x 4) . ... . (100 . 100)

= (1 . 2 . 3 . ... . 99) . (3 . 4 . 5 . ... . 101)/ (2 . 3 . 4 . ... . 100) . (2 . 3 . 4 . ... . 100)

= 1. 101/ 100 . 2

= 101/200

Kaito Kid
11 tháng 4 2022 lúc 21:13

0,625<0,9999

Phan Thị Dung
10 tháng 4 2023 lúc 21:12

\(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{9999}{10000}.\\ =\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{99.101}{100^2}.\\ =\dfrac{1.3.2.4.3.5...99.101}{2^2.3^2.4^2...100^2}.\\ =\dfrac{\left(1.2.3...99\right).\left(3.4.5...101\right)}{\left(2.3.4...100\right).\left(2.3.4...100\right)}.\\ =\dfrac{\left(1.1.1...1\right).\left(1.1.1...101\right)}{\left(1.1.1...100\right).\left(2.1.1...1\right)}=\dfrac{1.101}{100.2}=\dfrac{101}{200}.\)

Aquarius
Xem chi tiết
Nguyễn Bảo Trung
2 tháng 3 2017 lúc 20:40

\(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.....\dfrac{9999}{10000}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}\)

\(=\dfrac{\left(1.2.3.....99\right)}{\left(2.3.4.....100\right)}.\dfrac{\left(3.4.5.....101\right)}{\left(2.3.4.....100\right)}\)

\(\)\(=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}\)