Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Anh Vũ
Xem chi tiết
Chúc Phương
16 tháng 7 2021 lúc 12:28

a) \(A=\left(1-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+2\right)\)
        \(=\left(\dfrac{2}{2}-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+\dfrac{4}{2}\right)\)
        \(=\dfrac{2-\left(\sqrt{3}-1\right)}{2}:\dfrac{\left(\sqrt{3}-1\right)+4}{2}\)
        \(=\dfrac{3-\sqrt{3}}{2}.\dfrac{2}{\sqrt{3}+3}\)
        \(=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(1+\sqrt{3}\right)}\)
        \(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
        \(=\dfrac{\left(\sqrt{3}-1\right)^2}{2}\)
Vì \(\left\{{}\begin{matrix}\left(\sqrt{3}-1\right)^2>0\\2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(\sqrt{3}-1\right)^2}{2}>0\) hay A>0
=> A có căn bậc 2
Vậy......

b)\(B=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)
       \(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}-\sqrt{5}\right):\dfrac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
       \(=\left(\dfrac{\sqrt{2}\left(3-1\right)}{1-3}-\sqrt{5}\right).\dfrac{5-2}{\sqrt{5}+\sqrt{2}}\)
       \(=\left(-\sqrt{2}-\sqrt{5}\right).\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
       \(=-\left(\sqrt{2}+\sqrt{5}\right).\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
       \(=-3\)
Vì -3 < 0 hay B < 0 
=> B không có căn bậc 2
Vậy.....

Hoàng Phúc
Xem chi tiết
alibaba nguyễn
6 tháng 11 2016 lúc 6:36

Ta có từ n3 + 1 đến (n + 1)3 - 1 có

(n + 1)3 - 1 - n3 - 1 + 1 = 3n2 + 3n số có phần nguyên bằng n

Áp dụng vào cái ban đầu ta có

\(=\frac{3.1^2+3.1}{1}+\frac{3.2^2+3.2}{2}+...+\frac{3.2011^2+3.2011}{2011}\)

= 3.1 + 3 + 3.2 + 3 + ...+ 3.2011 + 3

= 3.2011 + 3(1 + 2 +...+ 2011)

= 6075231

Kamen rider kiva
5 tháng 11 2016 lúc 4:26

to thấy bài dễ mà 

alibaba nguyễn
5 tháng 11 2016 lúc 8:09

Dễ thì làm đi bạn

Mai Tiến Đỗ
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 15:30

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

Quynh Existn
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 7:31

`A=sqrt{(5-sqrt3)^2}+sqrt{(2-sqrt3)^2}`

`=5-sqrt3+2-sqrt3`

`=7-2sqrt3`

`B=sqrt{(3-sqrt2)^2}-sqrt{(1-sqrt2)^2}`

`=3-sqrt2-(sqrt2-1)`

`=4-2sqrt2`

`C=sqrt{(3+sqrt7)^2}-sqrt{(2-sqrt7)^2}`

`=3+sqrt7-(sqrt7-2)`

`=5`

`D=sqrt{4-2sqrt3}+sqrt{7+4sqrt3}`

`=sqrt{3-2sqrt3+1}+sqrt{4+2.2.sqrt3+3}`

`=sqrt{(sqrt3-1)^2}+sqrt{(2+sqrt3)^2}`

`=sqrt3-1+2+sqrt3=1+2sqrt3`

Nguyễn Ngọc Lộc
28 tháng 6 2021 lúc 7:34

\(A=\left|5-\sqrt{3}\right|+\left|2-\sqrt{3}\right|=5-\sqrt{3}+2-\sqrt{3}=7-2\sqrt{3}\)

\(B=\left|3-\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3-\sqrt{2}-\sqrt{2}+1=4-2\sqrt{2}\)

\(C=\left|3+\sqrt{7}\right|-\left|2-\sqrt{7}\right|=3+\sqrt{7}-\sqrt{7}+2=5\)

\(D=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2.2\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}=\left|\sqrt{3}-1\right|+\left|2+\sqrt{3}\right|\)

\(=\sqrt{3}-1+2+\sqrt{3}=1+2\sqrt{3}\)

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 13:17

\(x\sqrt{\dfrac{2}{x}}=\sqrt{x^2\cdot\dfrac{2}{x}}=\sqrt{2x}\)

\(x\sqrt{\dfrac{2}{5}}=\sqrt{\dfrac{2}{5}\cdot x^2}=\sqrt{\dfrac{2x^2}{5}}\)

\(\left(x-5\right)\cdot\sqrt{\dfrac{x}{25-x^2}}=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{-\left(x-5\right)\left(x+5\right)}}=\sqrt{-\dfrac{x\left(x-5\right)}{x+5}}\)

\(x\sqrt{\dfrac{7}{x^2}}=\sqrt{x^2\cdot\dfrac{7}{x^2}}=\sqrt{7}\)

James Pham
Xem chi tiết
:v .....
9 tháng 12 2021 lúc 21:51

B

 

kirf
Xem chi tiết
Rộp Rộp Rộp
Xem chi tiết
Kiyotaka Ayanokoji
27 tháng 7 2020 lúc 10:00

Trả lời:

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-12\sqrt{5}+9}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

\(A=\sqrt{1}\)

\(A=1\)

\(B=\frac{\left(5+2\sqrt{6}\right).\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(3+2\sqrt{6}+2\right).\left(49-20\sqrt{6}\right).\sqrt{3-2\sqrt{6}+2}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{33}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right).\left(49-20\sqrt{6}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(3-2\right).\left(49\sqrt{3}-60\sqrt{2}+49\sqrt{2}-40\sqrt{3}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{1.\left(9\sqrt{3}-11\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=1\)

Khách vãng lai đã xóa
Nobi Nobita
20 tháng 9 2020 lúc 16:01

a) Ta có: \(\sqrt{29-12\sqrt{5}}=\sqrt{20-12\sqrt{5}+9}=\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)

\(\Rightarrow\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{3-\left(2\sqrt{5}-3\right)}=\sqrt{3-2\sqrt{5}+3}\)

\(=\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)

\(\Leftrightarrow A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)( đpcm )

Khách vãng lai đã xóa
Minh Anh Vũ
Xem chi tiết
Trên con đường thành côn...
6 tháng 8 2021 lúc 15:54

undefined

Nguyễn Huy Tú
6 tháng 8 2021 lúc 15:54

\(=2\left|3-\sqrt{2}\right|+\sqrt{18}-5.1=6-2\sqrt{2}+3\sqrt{2}-5\)

\(=1+\sqrt{2}\)