\(=2\left|3-\sqrt{2}\right|+\sqrt{18}-5.1=6-2\sqrt{2}+3\sqrt{2}-5\)
\(=1+\sqrt{2}\)
\(=2\left|3-\sqrt{2}\right|+\sqrt{18}-5.1=6-2\sqrt{2}+3\sqrt{2}-5\)
\(=1+\sqrt{2}\)
rút gọn biểu thức chưa căn thức bậc hai:
1,\(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)
2, \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
3,\(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
4,\(\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
5,\(\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
Rút gọn các biểu thức sau:
j) \(\left(\dfrac{1}{\sqrt{7-2\sqrt{10}}}-\dfrac{\sqrt{2}}{\sqrt{10}+2}+1\right):\left(\sqrt{2}+1\right)^2\)
k) \(\sqrt{5}\left(\sqrt{6}+1\right):\dfrac{\sqrt{2\sqrt{3}+\sqrt{2}}}{\sqrt{2\sqrt{3}}-\sqrt{2}}\)
o) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
p) \(\left(\sqrt{5}+3\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)
Rút gọn các biểu thức sau:
a. \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}\) - \(\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
b.\(\dfrac{1}{4-3\sqrt{2}}\) - \(\dfrac{1}{4+3\sqrt{2}}\)
c.\(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right)\): \(\sqrt{28}\)
d.\(\dfrac{3}{\sqrt{6}-\sqrt{3}}\)+\(\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
Rút gọn các biểu thức sau:
A= \(3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
B= \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)
C= \(3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
D= \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
E= \(\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\sqrt{\left(3+\sqrt{2}\right)^2}\)-\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
b) \(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}\)-\(\sqrt{\left(\sqrt{7}+2\sqrt{2}\right)^2}\)
c)\(\sqrt{\left(3+\sqrt{5}\right)^2}\)+\(\sqrt{\left(3-\sqrt{5}\right)^2}\)
d) \(\sqrt{\left(2-\sqrt{3}\right)^2}\)-\(\sqrt{\left(2+\sqrt{3}\right)^2}\)
RÚT GỌN BIỂU THỨC
A= \(\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\)\(\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)
B= \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\)\(\left(\sqrt{6}+11\right)\)
Rút gọn các biểu thức sau
a) 2\(\sqrt{32}\) + 3\(\sqrt{72}-7\sqrt{50}+\sqrt{2}\) b)\(\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\) c) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
d) \(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\) e) \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}vớia< b\)
Rút gọn các biểu thức sau:
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)\) b) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
c) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}\) d) \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)