Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
SuSu

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm GTNN của biểu thức \(P=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)

Akai Haruma
2 tháng 1 2021 lúc 15:29

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(\sqrt{6(x^2+5)}=\sqrt{6(x^2+xy+yz+xz)}=\sqrt{6(x+y)(x+z)}=\sqrt{(3x+3y)(2x+2z)}\leq \frac{3x+3y+2x+2z}{2}\)

\(\sqrt{6(y^2+5)}=\sqrt{6(y^2+xy+yz+xz)}=\sqrt{6(y+x)(y+z)}=\sqrt{(3y+3x)(2y+2z)}\leq \frac{3y+3x+2y+2z}{2}\)

\(\sqrt{z^2+5}=\sqrt{z^2+xy+yz+xz}=\sqrt{(z+x)(z+y)}\leq \frac{z+x+z+y}{2}\)

Cộng theo vế thu được:

\(\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{z^2+5}\leq \frac{3(3x+3y+2z)}{2}\)

\(\Rightarrow P\geq \frac{3x+3y+2z}{\frac{3}{2}(3x+3y+2z)}=\frac{2}{3}\)

Vậy $P_{\min}=\frac{2}{3}$


Các câu hỏi tương tự
Mai Tiến Đỗ
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Kakarot Songoku
Xem chi tiết
Kakarot Songoku
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
le duc minh vuong
Xem chi tiết