Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
bí mật
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 16:49

Áp dụng cosi

`1/x^2+1/y^2>=2/(xy)`

`=>1/2>=2/(xy)`

`=>xy>=4`

Aps dụng cosi

`=>x+y>=2\sqrt{xy}=2.2=4`

Dấu "=" xảy ra khi `x=y=4`

✿✿❑ĐạT̐®ŋɢย❐✿✿
28 tháng 2 2021 lúc 16:52

Có : \(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2}\cdot\dfrac{1}{y^2}}=\dfrac{2}{xy}\)

\(\Rightarrow xy\ge4\)

Ta có : \(A=x+y\ge2\sqrt{xy}=2\sqrt{4}=4\)

Dấu "=" xảy ra khi \(x=y=2\)

Vậy min A = 4 khi $x=y=2$

Phạm Trịnh Ca Thương
Xem chi tiết
Nguyễn Huy Tú
11 tháng 2 2022 lúc 12:23

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

Nguyễn Khánh Công
11 tháng 2 2022 lúc 12:22

lk

Nguyễn Huy Tú
11 tháng 2 2022 lúc 12:31

a, \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\Leftrightarrow\dfrac{2x-7}{14}=\dfrac{y}{y+1}\Rightarrow\left(2x-7\right)\left(y+1\right)=14y\)

\(\Leftrightarrow2xy+2x-7y-7=14y\Leftrightarrow2xy+2x-21y-7=0\)

\(\Leftrightarrow2x\left(y+1\right)-21\left(y+1\right)+14=0\Leftrightarrow\left(2x-21\right)\left(y+1\right)=-14\)

\(\Rightarrow2x-21;y+1\inƯ\left(-14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

2x - 21 1 -1 2 -2 7 -7 14 -14
y + 1 -14 14 -7 7 -2 2 -1 1
x 11 10 loại loại 14 7 loại loại
y -15 13 loại loại -3 1 loại loại

 

Doãn Đức Khôi
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:27

Chắc đề đúng là số dương, vì ko tồn tại x;y nguyên dương thỏa mãn x+y=1

\(A=\dfrac{y^2}{xy+y}+\dfrac{x^2}{xy+x}\ge\dfrac{\left(x+y\right)^2}{x+y+2xy}\ge\dfrac{\left(x+y\right)^2}{x+y+\dfrac{1}{2}\left(x+y\right)^2}=\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Vũ Thành Hưng
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2021 lúc 22:13

\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)

\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)

\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)

Vũ Thành Hưng
Xem chi tiết
Cathy Trang
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2021 lúc 18:25

Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)

\(\Leftrightarrow x^2+2\le3x\)

Hoàn toàn tương tự ta có \(y^2+2\le3y\)

Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)

\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)

Đặt \(a=x+y-1\Rightarrow1\le a\le3\)

\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)

\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)

\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)

\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 21:19

\(B=\dfrac{2^2}{x}+\dfrac{3^2}{y}\ge\dfrac{\left(2+3\right)^2}{x+y}=25\)

\(B_{min}=25\) khi \(\left(x;y\right)=\left(\dfrac{2}{5};\dfrac{3}{5}\right)\)

piojoi
Xem chi tiết
Toru
2 tháng 9 2023 lúc 22:35

\(\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{x-y}\left(ĐK:x>0;y>0\right)\)

\(\Rightarrow\dfrac{y-x}{xy}=\dfrac{1}{x-y}\)

\(\Rightarrow\left(y-x\right)\left(x-y\right)=xy\)

\(\Rightarrow-\left(x-y\right)^2=xy\) \(^{\left(1\right)}\)

Vì x, y nguyên dương khác nhau và khác 0 ⇒ \(xy>0 \) \(^{\left(2\right)}\)

Ta thấy: \(\left(x-y\right)^2>0\forall x;y\in Z;x\ne y\)

\(\Rightarrow-\left(x-y\right)^2< 0\forall x;y\in Z;x\ne y\)  \(^{\left(3\right)}\)

Từ \(\left(1\right);\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow\) Không tìm được hai số x, y nguyên dương khác nhau thoả mãn yêu cầu đề bài.

#\(Urushi\)

VUX NA
Xem chi tiết
Hồng Phúc
21 tháng 8 2021 lúc 16:24

Áp dụng BĐT AM-GM:

\(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)

\(=\dfrac{x^2}{y-1}+4\left(y-1\right)+\dfrac{y^2}{x-1}+4\left(x-1\right)-4\left(x+y\right)+8\)

\(\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}+2\sqrt{\dfrac{y^2}{x-1}.4\left(x-1\right)}-4\left(x+y\right)+8\)

\(\ge4\left(x+y\right)-4\left(x+y\right)+8=8\)

\(\Rightarrow P_{min}=8\Leftrightarrow x=y=2\)

Nguyễn Việt Lâm
21 tháng 8 2021 lúc 16:24

\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge4x\) ; \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\)

Cộng vế:

\(P+4\left(x+y\right)-8\ge4\left(x+y\right)\Rightarrow P\ge8\)

Dấu "=" xảy ra khi \(x=y=2\)